We apply the gravity calculation expressed in the formula: g=GM/r2
where G is the gravitational constant, m is the mass and r is the radius
r=√GM/g
(1) Radius = √6.674e-11*5.972e24/8 = 7058 kms Earth radius or surface of earth from center of earth= 6400 kmsSo r= 658 kms from surface of earth.
Gravity 8m/s2 will be at 658 kms from surface of earth.
(2) half gravity= 9.8/2= 4.9 m/s2 Radius=√6.674e-11*5.972e24/4.9 = 9019 kms Half Gravity will exist at 9019-6400= 2619 kms from surface of earth.
The total distance traveled from home to the grocery store would be 8km.
Because both distances she traveled were in the same direction, north, both displacement and distance travel were equal.
If the student traveled in two different directions, such as north to the school and south to the grocery store, her distance traveled would be 8km but her displacement would only be 6km.
Hi there!
We must begin by converting km/h to m/s using dimensional analysis:

Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N
AC or DC
someone use active current or Direct current
Transpiration is the what the process is called.
It controls the release of water through the stomata.