The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer :
Option A) 2.00 eV
Explanation : The conversion of J to eV is done with the following formula;

Here, we have the value of particle in terms of Joules which is 3.2 X

So, on substituting we get,

= 3.2 X

X


= 1.99 eV so, it can be rounded off to 2.00 eV.
Answer:
60g
Explanation:
Moles = mass / mollar mass
Mass = Moles x mollar mass
Mass = 2.50 x 24
Mass = 60g