<span>Argon and chlorine are both gases at room temperature because they are non-metals.</span>
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86
Answer:
Explanation:
A) Reactant that can produce more of the product
Excess reactant:
In a given reaction, the reactant that is in excess supply is the excess reactant. If the amount of the excess reactant is match, more of the product will be produced.
B) Reactant that can produce a lesser amount of the product
Limiting reactant
The limiting reactant restricts the progress of the reaction. It determines the amount of product that can be formed.
C) Amount of product predicted to be produced by the given reactants
Theoretical yield
For a given amount of reactants, the theoretical yield determines the amount of products that can be produced.