Balanced chemical reaction: 2KCl + Pb(NO₃)₂ → PbCl₂ + 2KNO₃.
According to principle of mass conservation, number of atoms must be equal on both side of balanced chemical reaction.
KCl is potassium chloride.
Pb(NO₃)₂ is lead(II) nitrate.
KNO₃ is potassium nitrate.
PbCl₂ is lead(II) chloride.
<span>We look at the end of the day:
n(HNO3) added = 0.500*17.0/1000 = 0.00850 mol
n(NH3) = 0.200*75.0/1000 - 0.00850 = 0.00650 mol
[NH3] left = 0.00650*1000/(17.0+75.0) = 0.070652
M [OH-] = Kb * [NH3] = 0.070652*1.8*10^(-5) = 1.27174 x 10^(-6)
pOH = -log[OH-] ≈ 5.8956 pH = 14 - pOH ≈ 8.10</span>
Answer:
When energy is removed in liquid water then it will solidify since heat is given off by the system to its surrounding. It is an exothermic process where the enthalpy decreases since heat is taken off. So liquid water becomes ice in an exothermic process.
Explanation:
Answer: Option (B) is the correct answer.
Explanation:
As the given reaction is as follows.
Equilibrium constant for this reaction will be as follows.
![K_{c} = \frac{[CO_{2}]}{[CO]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCO_%7B2%7D%5D%7D%7B%5BCO%5D%5E%7B2%7D%7D)
According to Le Chatelier's principle, when we increase the temperature then the equilibrium will shift towards the right hand side.
As a result, concentration of carbon dioxide will decrease whereas concentration of carbon monoxide will increase.
Thus, we can conclude that in the given reaction equilibrium constant for this reaction will decrease with increasing temperature.
Answer:
a free swimming larval stage in which a parasitic fluke passes from an intermediate host to another intermediate host