Answer: 64.6 mmHg
Explanation:
Given that:
Volume of gas V = 3.47L
(since 1 liter = 1dm3
3.47L = 3.47dm3)
Temperature T = 85.0°C
Convert Celsius to Kelvin
(85.0°C + 273 = 358K)
Pressure P = ?
Number of moles of gas N = 0.100 mole
Note that Molar gas constant R is a constant with a value of 0.0082 ATM dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 3.47dm3 = 0.10 x (0.0082 atm dm3 K-1 mol-1 x 358K)
p x 3.47dm3 = 0.29 atm dm3
p = (0.29 atm dm3 / 3.47 dm3)
p = 0.085 atm
Recall that pressure of the gas is required in mm hg, so convert 0.085 atm to mm Hg
If 1 atm = 760 mm Hg
0.085atm = 0.085 x 760
= 64.6 mm Hg
Thus, the pressure of the gas is 64.6 mm hg
The oxidation number of chlorine in the reactant can be determined by K ion and O ion. K ion is +1 and O ion is -2. And the Cl is +5. The gas has the greatest entropy and the solid has the least. In the production, there are solid and gas. So it has more entropy than the reactants with solid only.
Answer:
Density
Explanation:
The ratio of mass to the volume of an object is called its density. Unit of mass is grams and that of volume is mL.
Density = mass/volume

If you are calculating the grams to mL ratio, it means that we are trying to find the object's density.