Answer:
Explanation:
Use the one-dimensional equation
Δx =
where delta x is the displacement of the object, v0 is the velocity of the object, a is the pull of gravity, and t is the time in seconds. That's our unknown.
Δx = -2 (negative because where it ends up is lower than the point at which it started),
, and
a = -9.8
Filling in:
and simplified a bit:

this should look hauntingly familiar (a quadratic, which is parabolic motion...very important in physics!!). We begin by getting everything on one side of the equals sign and solving for t by factoring:
(the 0 is also indicative of the object landing on the ground! Isn't this a beautiful thing, how it all just works so perfectly together?)
When you factor this however your math/physics teacher has you factoring you will get that
t = 1.3 sec and t = -.31 sec
Since we all know that time can NEVER be negative, it takes the ball 1.3 sec to hit the ground from a height of 2 m if it is rolling off the shelf at 5 m/s.
Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm