Answer:
1176 Nm or J
Explanation:
W = F*d
F = 60kg * 9.8 kgm/s^2 = 588 N
W = 588 N * 2m = 1176 N*m
Ok so this is simple projectile motion problem.
if we have an object falling in free fall it is subject to gravity of -9.80m/s^2
so it says it takes 6 sec to fall and we know initial velocity was zero so we know that h=vt+1/2gt^2 so we get h=0+1/2*9.80*6^2 = 176.4m
so solving for final speed we get KE=PE = 1/2mv^2=mgh = 1/2v^2=gh so
v=sqrt(2*g*h) = sqrt(2*9.8*176.4m) = 58.8m/s final speed when it hits the ground
hope this helps you! Thanks!!
Answer:
Wheel A.
Explanation:
The lesser the moment of inertia, the greater the angular acceleration. Then, the moments of inertia of each wheel are described below:
Wheel A

Wheel B


The wheel A accelerates faster in response to the torque.
Answer:
Branches of physics with real life examples
In measuring and understanding nuclear fission (a real life phenomenon), all branches of theoretical and experimental physics have to be employed. Physics branches needed in it are, radiation detection and measurement, nuclear physics, statistical physics, thermodynamics, and almost all others.
Explanation:
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.