About 5 hours gooood luck
Answer:

Explanation:
According to the free-body diagram of the system, we have:

So, we can solve for T from (1):

Replacing (3) in (2):

The electric force (
) is given by the Coulomb's law. Recall that the charge q is the same in both spheres:

According to pythagoras theorem, the distance of separation (r) of the spheres are given by:

Finally, we replace (5) in (4) and solving for q:

Answer:
B = 9.16 10⁻² T
Explanation:
The speed selector is a configuration where the electric and magnetic force has the opposite direction, which for a specific speed cancel
q v B = q E
v = E / B
B = E / v
Let's calculate
B = 4.4 10⁵ / 4.8 10⁶
B = 9.16 10⁻² T
Answer:
Δ
= 84 Ω,
= (40 ± 8) 10¹ Ω
Explanation:
The formula for parallel equivalent resistance is
1 /
= ∑ 1 / Ri
In our case we use a resistance of each
R₁ = 500 ± 50 Ω
R₂ = 2000 ± 5%
This percentage equals
0.05 = ΔR₂ / R₂
ΔR₂ = 0.05 R₂
ΔR₂ = 0.05 2000 = 100 Ω
We write the resistance
R₂ = 2000 ± 100 Ω
We apply the initial formula
1 /
= 1 / R₁ + 1 / R₂
1 /
= 1/500 + 1/2000 = 0.0025
= 400 Ω
Let's look for the error (uncertainly) of Re
= R₁R₂ / (R₁ + R₂)
R’= R₁ + R₂
= R₁R₂ / R’
Let's look for the uncertainty of this equation
Δ
/
= ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’
The uncertainty of a sum is
ΔR’= ΔR₁ + ΔR₂
We substitute the values
Δ
/ 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)
Δ
/ 400 = 0.1 + 0.05 + 0.06
Δ
= 0.21 400
Δ
= 84 Ω
Let's write the resistance value with the correct significant figures
= (40 ± 8) 10¹ Ω