I may be wrong, but I think you're trying to say that Planet-A is
<em>3 times as far from the sun</em> as Planet-C is.
If that's the real question, then the answer is that the period of Orbit-A
is about<em> 5.2</em> times as long as the period of Orbit-C .
Orbital period ≈ (proportional to) (the orbital distance) ^ 3/2 power.
This was empirically demonstrated about 350 years ago by Johannes
and his brilliant Kepple, and derived about 100 years later by Newton
from his formula for the forces of gravity.
Answer:
(a) 0.204 Weber
(b) 0.22 Volt
Explanation:
N = 100, radius, r = 10 cm = 0.1 m, B = 0.0650 T, angle is 90 degree with the plane of coil, so theta = 0 degree with the normal of coil.
(a) Magnetic flux, Ф = N x B x A
Ф = 100 x 0.0650 x 3.14 x 0.1 0.1
Ф = 0.204 Weber
(b) B1 = 0.0650 T, B2 = 0.1 T, dt = 0.5 s
dB / dt = (B2 - B1) / dt = (0.1 - 0.0650) / 0.5 = 0.07 T / s
induced emf, e = N dФ/dt
e = N x A x dB/dt
e = 100 x 3.14 x 0.1 x 0.1 x 0.07 = 0.22 V
A cavity that has a hole in it......it's the best example of black body radiators....
Answer:

Explanation:
As we know that the charge per unit length of the long cylinder is given as

here we know that the electric field between two cylinders is given by

now we know that electric potential and electric field is related to each other as




