The acceleration of the bus is 1.11 meters per second square to the direction of motion
Explanation:
Acceleration is the rate of change of velocity
The formula of the acceleration is
, where
is the initial velocity
is the final velocity- t is the time
A bus that goes from 10 km/h to a speed of 50 km/h in 10 seconds
→
= 10 km/h
→
= 50 km/h
→ t = 10 seconds
Change the unite of the time from seconds to hour
→ 1 hour = 60 × 60 = 3600 seconds
→ 10 seconds =
hour
Substitute these values in the formula of the acceleration above
→ 
→ a = 14400 km/h²
To change the unit of acceleration to meter per second change the
kilometer to meter and the hour to seconds
→ 1 km = 1000 m
→ 1 hour = 3600 seconds
→ 
→ a = 1.11 m/sec².
The acceleration of the bus is 1.11 meters per second square to the direction of motion
Learn more:
You can learn more about the acceleration in brainly.com/question/6323625
#LearnwithBrainly
Answer:
400m
Explanation:
Brainliest? :))
Let your initial displacement from your home to the store be
Dd
>
1 and your displacement from the store to your friend’s house
be Dd
>
2.
Given: Dd
>
1 = 200 m [N]; Dd
>
2 = 600 m [S]
Required: Dd
>
T
Analysis: Dd
>
T 5 Dd
>
1 1 Dd
>
2
Solution: Figure 6 shows the given vectors, with the tip of Dd
>
1
joined to the tail of Dd
>
2. The resultant vector Dd
>
T is drawn in red,
from the tail of Dd
>
1 to the tip of Dd
>
2. The direction of Dd
>
T is [S].
Dd
>
T measures 4 cm in length in Figure 6, so using the scale of
1 cm : 100 m, the actual magnitude of Dd
>
T is 400 m.
Statement: Relative to your starting point at your home, your
total displacement is 400 m [S].
Answer:
The tension in the rope is 41.38 N.
Explanation:
Given that,
Mass of bucket of water = 14.0 kg
Diameter of cylinder = 0.260 m
Mass of cylinder = 12.1 kg
Distance = 10.7 m
Suppose we need to find that,
What is the tension in the rope while the bucket is falling
We need to calculate the acceleration
Using relation of torque


Where, I = moment of inertia
= angular acceleration

...(I)
Here, F = tension
The force is
...(II)
Where, F = tension
a = acceleration
From equation (I) and (II)


Put the value into the formula


We need to calculate the tension in the rope
Using equation (I)

Put the value into the formula


Hence, The tension in the rope is 41.38 N.
T=s/v=>t=1500/1,5=1000s
1,5km=1500m