1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helga [31]
3 years ago
9

A 2 kg block slides on a rough horizontal surface with muk=0.6. It has an initial velocity of 5 m/s. Use g = 10 m/s2

Physics
1 answer:
Irina18 [472]3 years ago
4 0

Answer:

360000

Explanation:

You might be interested in
If a force does a positive amount of work on an object, does the object's speed
Alexxandr [17]

The speed of the object increases

Explanation:

We can answer this question by applying the work-energy theorem, which states that the work done on an object is equal to the change in kinetic energy of the object. Mathematically:

W=K_f -K_i= \frac{1}{2}mv^2-\frac{1}{2}mu^2

where

W is the work done on the object

K_f, K_i are the final and initial kinetic energy of the object, respectively

m is the mass of the object

v is its final speed

u is its initial speed

In this case, the force does a positive amount of work on the object, so

W>0

This also implies that

K_f > K_i

And so

\frac{1}{2}mv^2 > \frac{1}{2}mu^2

And therefore

v>u

which means that the speed of the object increases.

Learn more about  work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

8 0
3 years ago
The study of blank involves the study of the natural world
RUDIKE [14]
The study of science involves the study of the natural world.
3 0
3 years ago
Which type of bone is this <br>covalent bond<br>hydrogen bond <br>ionic bond​
Fynjy0 [20]

Answer:

Explanation:A covalent bond is formed when electrons are shared between non-metal atoms, and the positive nuclei are attracted towards the pair of negative bonded electrons. ... Hence, the hydrogen bond is weaker than ionic and covalent bonds. Example: Water molecules are held to each other by intermolecular forces of attraction.

5 0
4 years ago
An airplane of mass 1.60 ✕ 104 kg is moving at 66.0 m/s. The pilot then increases the engine's thrust to 7.70 ✕ 104 N. The resis
Ivan

(a) No, because the mechanical energy is not conserved

Explanation:

The work-energy theorem states that the work done by the engine on the airplane is equal to the gain in kinetic energy of the plane:

W=\Delta K (1)

However, this theorem is only valid if there are no non-conservative forces acting on the plane. However, in this case there is air resistance acting on the plane: this means that the work-energy theorem is no longer valid, because the mechanical energy is not conserved.

Therefore, eq. (1) can be rewritten as

W=\Delta K + E_{lost}

which means that the work done by the engine (W) is used partially to increase the kinetic energy of the airplane (\Delta K) and part is lost because of the air resistance (E_{lost}).

(b) 77.8 m/s

First of all, we need to calculate the net force acting on the plane, which is equal to the difference between the thrust force and the air resistance:

F=7.70\cdot 10^4 N - 5.00 \cdot 10^4 N=2.70\cdot 10^4 N

Now we can calculate the acceleration of the plane, by using Newton's second law:

a=\frac{F}{m}=\frac{2.70\cdot 10^4 N}{1.60\cdot 10^4 kg}=1.69 m/s^2

where m is the mass of the plane.

Finally, we can calculate the final speed of the plane by using the equation:

v^2- u^2 = 2aS

where

v=? is the final velocity

u=66.0 m/s is the initial velocity

a=1.69 m/s^2 is the acceleration

S=5.00 \cdot 10^2 m is the distance travelled

Solving for v, we find

v=\sqrt{u^2+2aS}=\sqrt{(66.0 m/s)^2+2(1.69 m/s^2)(5.00\cdot 10^2 m)}=77.8 m/s

8 0
3 years ago
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
3 years ago
Other questions:
  • An object of mass 100kg is released from rest and falls through a distance of 10m.what is the work done by gravity
    6·1 answer
  • What is the difference between longitudinal and transverse waves?
    12·1 answer
  • What form of energy is changed to sound energy when uou use a cd player?
    5·1 answer
  • A wave has a period of 4 seconds. What is its frequency?
    15·1 answer
  • When plug prongs are connected to the metal case of an appliance, a part that should always be placed next to the case is a
    12·1 answer
  • Linda has a cup of coffee sitting in the cup holder in her car. She has to suddenly slam on her brakes and stop. The cup remaine
    14·1 answer
  • A basketball of mass 0.608 kg is dropped from rest from a height of 1.37 m. It rebounds to a height of 0.626 m.
    14·1 answer
  • The spacecraft that really gave scientists their first good close-up look at the planet Mercury was:
    7·1 answer
  • A. A cord passing over an easily turned pulley (one that is both massless and frictionless) has 7kg mass hanging from one end an
    12·1 answer
  • URGENT!! ILL GIVE BRAINLIEST! AND 100 POINTS
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!