Answer:
3.2×10^-3 mol
Explanation:
The equation for molarity is M= n/L. Where "M" is Molarity, "n" is the number of moles of solute, and "L" is the total liters in solution.
The question gives you the volume in mL, so to convert "mL" to "L" you need to divide by 1000. (6.70mL/ 1000L)= 0.0067L.
Now you can plug the numbers into the equation. 0.480M= n/ 0.0067L), multiply (0.480M×0.0067L)= 0.003216 mol. The scientific notation is 3.2×10^-3, 10^-3 because you move the decimal back three times and 3.2 because there are 2 sig figs.
The molecular weight of hemoglobin can be calculated using osmotic pressure
Osmotic pressure is a colligative property and it depends on molarity as
πV = nRT
where
π = osmotic pressure
V = volume = 1mL = 0.001 L
n = moles
R = gas constant = 0.0821 L atm / mol K
T = temperature = 25°C = 25 + 273 K = 298 K
Putting values we will get value of moles

we know that

Therefore

The factor in determining the average atomic mass of an element is:
B or 2 relative abundance of each isotope because the by looking at how many protons , electrons and neutrons the most isotope is of the element has relative abundance.
Answer:
Precipitate
Explanation:
A precipitate is a solid formed from a chemical solution
Answer:
Magnesium oxide is a binary compound of magnesium and oxygen while magnesium ribbon consists only of magnesium atoms.
Explanation:
The burning of magnesium in oxygen is a chemical change. It produces magnesium oxide having greater mass than magnesium ribbon. The greater mass results from the fact that the chemical reaction has added another element to the sample- oxygen. The mass of magnesium ribbon is the mass of magnesium atoms alone but in magnesium oxide, we consider the masses of magnesium and oxygen atoms making magnesium oxide heavier than magnesium ribbon.