Answer:
The correct answer is 25 mL graduated cylinder (it should be used in all the cases)
Explanation:
In order to measure 25.00 ml sample of a solution it should be used a 25 mL graduated cylinder, as it is previously and properly calibrated. The other laboratory glassware, beaker and erlenmeyer, have graduations which are approximate, so they are used when exact volumes are not needed.
ii) graduated cylinder has the least uncertainly. It is more accurate than a beaker or erlenmeyer (to within 1%)
iii) A 25 mL graduated cylinder should be used because it is the most accurate lab glassware (between those were mentioned: beaker, erlenmeyer).
The answer is B. A good way determine this is how far right the element is on the periodic table. The further right the element is, the more electronegative it is meaning it is more willing to accept an electron. This can be explained using the valence electrons and how many need to be added or removed to complete the octet. The further right you are, the easier it is for the element to just gain a few electrons instead of loose a bunch. Noble gases are the exception to this since they don't normally react though.
Answer:
See figure 1
Explanation:
If we want to find the acid and the Brønsted-Lowry base, we must remember the definition for each of these molecules:
-) Acid: hydrogen donor
-) Base: hydrogen acceptor
In the <u>caffeine structure,</u> we have several atoms of nitrogen. These nitrogen atoms have the ability to <u>accept</u> hydronium ions (
). Therefore the caffeine molecule will be the base since it can accept
If caffeine is the base, the water must be the acid. So, the water in this reaction donated a hydronium ion.
<u>Thus, caffeine is the base and water the acid. (See figure 1)</u>
Answer:
Try this link https://chem.libretexts.org/Courses/Mount_Aloysius_College/CHEM_100%3A_General_Chemistry_(O'Connor)/08%3A_Solids_Liquids_and_Gases/8.E%3A_Solids_Liquids_and_Gases_(Exercises)