Answer:
Options A, B, and C are all possible.
Explanation:
We know that the instantaneous velocity of the dog at 3:14PM is possitive to toward the flowers. But what about the acceleration to toward the flowers?
If the dog is decreasing speed at 3:14PM, it means that acceleration is negative toward the flowers, hence (since F=ma) the net force points away from the flowers.
If the dog is increasing speed at 3:14PM, it means that acceleration is positive toward the flowers, hence (since F=ma) the net force points toward the flowers.
If the dog is not increasing nor decreasing speed at 3:14PM, it means that acceleration is 0, hence (since F=ma) the net force is null and it does not point neighter to toward the flowers nor away from the flowers. This happens when the forces acting on the dog are equal to both sides.
The Answer is B because primary consumers need to get their food from plants.
The answer to this question is 3.69
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
Answer:
Gold
Explanation:
Given:
Mass of sample = 63.5 g
Mass of water = 60.2 g
Find:
Object
Computation:
Mass of water displaced = 63.5 g - 60.2 g
Mass of water displaced = 3.3 g
So, volume in water = 3.3 cm³
Density = Mass / Volume
Density = 63.5 g / 3.3
Density = 19.24
So,
Object ,must be gold.