Answer:

Explanation:
As we know that tension force in the string will be equal to the centripetal force on the string
so we will have

now we have

now we have


now when string length is 0.896 m and its speed is 71.5 m/s then we will have



Earth is smaller and have 1 moon so it rotates faster than jupiter and it have 6 moons
Also,earth is the earth is the earth and orbits the sun faster than jupiter the 7th
It doesn't the sun stays still we move around the sun
Answer:
The length of the incline is 3.504 meters.
Explanation:
Let suppose that Julietta's ball decelerates uniformly, then we determine the length of the incline is determined by the following equation of motion:
(Eq. 1)
Where:
- Length of the incline, measured in meters.
- Initial speed of the ball, measured in meters per second.
- Aceleration of the ball, measured in meters per square second.
- Time, measured in second.
If we know that
,
and
, then the length of the incline is:


The length of the incline is 3.504 meters.
Answer:
Ecu/Eag = 0.46
Explanation:
E = PI/A
Ecu = Pcu × I/A
Pcu = 1.72×10^-8 ohm-meter
r = 0.8 mm = 0.8/1000 = 8×10^-4 m
A = πr^2 = π×(8×10^-4)^2 = 6.4×10^-7π
Ecu = 1.72×10^-8I/6.4×10^-7π = 0.026875I/1
Eag = Pag × I/A
Pag = 1.47×10^-8 ohm-meter
r = 0.5 mm = 0.5/1000 = 5×10^-4 m
A = πr^2 = π × (5×10^-4)^2 = 2.5×10^-7π
Eag = 1.47×10^-8I/2.5×10^-7π = 0.0588I/π
Ecu/Eag = 0.026875I/π × π/0.0588I = 0.46