Answer:
3.88m/s
Explanation:
Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and 2 are the initial velocities
v is the final velocity
Given
m1 = 64kg
u1 = 4.2m/s
m2 = 25kg
u2 = 3.2m/s
Required
Final velocity v
Substitute the given values into the formula
64(4.2)+25(3.2) = (65+25)v
268.8+80 = 90v
348.8 = 90v
v = 348.8/90
v = 3.88m/s
Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s
Answer:
The remaining percentage of drug concentration is about 88.7% 2 years after manufacture.
Explanation:
Recall the formula for the decay of a substance at an initial
concentration at manufacture:

where k is the decay rate (in our case 0.06/year), and t is the elapsed time in years. Therefore, after 2 years since manufacture we have:

This in percent form is 88.7 %. That is, the remaining percentage of drug concentration is about 88.7% 2 years after manufacture.
Answer:
t = 16.5s
Explanation:
Given parameters:
Acceleration = 3.1m/s²
Initial velocity = 0m/s
Final velocity = 51m/s
Unknown:
Time taken = ?
Solution:
To solve this problem we need to reiterate that acceleration is the rate of change of velocity with time.
So;
Acceleration =
v is the final velocity
u is the initial velocity
t is the time taken
So;
3.1 =
3.1t = 51
t = 16.5s
Answer:

Explanation:
Given that,
A radio wave transmits 38.5 W/m² of power per unit area.
A flat surface of area A is perpendicular to the direction of propagation of the wave.
We need to find the radiation pressure on it. It is given by the formula as follows :

Where
c is speed of light
Putting all the values, we get :

So, the radiation pressure is
.
when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N