Answer:
The distance is 0.53 m.
Explanation:
Given that,
Target distance = 100.0 m
Speed of bullet = 300 m/s
We need to calculate the total time
Using formula of time

Put the value into the formula


Now, consider vertical motion of bullet.
Initial velocity of bullet in vertical direction = 0 m/s
We need to calculate the vertically distance
Using equation of motion

Put the value in the equation


Hence, The distance is 0.53 m.
C is the answer to your question!
Answer:
the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Explanation:
a) Kinetic energy of block = potential energy in spring
½ mv² = ½ kx²
Here m stands for combined mass (block + bullet),
which is just 1 kg. Spring constant k is unknown, but you can find it from given data:
k = 0.75 N / 0.25 cm
= 3 N/cm, or 300 N/m.
From the energy equation above, solve for v,
v = v √(k/m)
= 0.15 √(300/1)
= 2.598 m/s.
b) Momentum before impact = momentum after impact.
Since m = 1 kg,
v = 2.598 m/s,
p = 2.598 kg m/s.
This is the same momentum carried by bullet as it strikes the block. Therefore, if u is bullet speed,
u = 2.598 kg m/s / 8 × 10⁻³ kg
= 324.76 m/s.
Hence, the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Answer:
Both Tech A and Tech B
Explanation:
It's important to position sensor accurately to the position of camshaft to the powertrain control in the ignition module as said by Tech A. Equally, to achieve what Tech A says, a special tool can be used for comparing the position of camshaft sensor to crankshaft sensor. Therefore, both technicians are correct.
Answer:
a. -369.36J
b. -123.9J
c. 9.52m
Explanation:
From the expression for kinetic energy
K. E=1/2mv^2
Since the mass is constant, but the velocity changes. Hence the change in kinetic energy is
K.E=1/2*19(3.6²-7.2²)
K.E= -369.36J
b. to determine the workdone by the force,we determine the distance moved.
But the acceleration is from
F=ma ,
a=f/m
a=-13/19
0.68m/s²
the distance moved is
s=v²/2a
s=3.6²/2*0.68
s=9.52m
Hence the work done is
W=force * distance
W=-13*9.52
W=-123.9J
d. the distance moved is
s=v²/2a
s=3.6²/2*0.68
s=9.52m