1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
7

With some manipulation, the rydberg equation can be rewritten in the form e=constant×(1nf2−1ni2) which allows you to calculate t

he energy of the emitted light. what is the value of the constant needed to complete this equation? express the constant in joules to three significant figures.
Physics
1 answer:
Alinara [238K]3 years ago
6 0
<span>The value of the constant needed to complete in joules to three significant figures is 2.18 x 10^-18 J.</span>
You might be interested in
The components of vector A are:
Korvikt [17]

here as it is given that x component of the vector is positive while y component of the vector is negative so we can say the vector must inclined in Fourth quadrant.

So angle must be more than 270 degree and less than 360 degree

Now in order to find the value we can say that

tan\theta = \frac{opposite\: side}{adjacent\: side}

tan\theta = \frac{8.6}{6.1}

\theta = tan^{-1}1.41

\theta = 54.65^0

so it is inclined at above angle with X axis in fourth quadrant

Now if angle is to be measured counterclockwise then its magnitude will be

\theta = 360 - 54.65 = 305.3^0

so the correct answer will be 305 degree

3 0
3 years ago
Accelerates uniformly at 2.0 ms2 for 10.0s. Calculate its final velocity​
Crazy boy [7]

Answer:

The distance is

=

7

m

Explanation:

Apply the equation of motion

s

(

t

)

=

u

t

+

1

2

a

t

2

The initial velocity is

u

=

0

m

s

−

1

The acceleration is

a

=

2

m

s

−

2

Therefore, when

t

=

3

s

, we get

s

(

3

)

=

0

+

1

2

⋅

2

⋅

3

2

=

9

m

and when

t

=

4

s

s

(

4

)

=

0

+

1

2

⋅

2

⋅

4

2

=

16

m

Therefore,

The distance travelled in the fourth second is

d

=

s

(

4

)

−

s

(

3

)

=

16

−

9

=

7

m

4 0
2 years ago
He throws a second ball (B2) upward with the same initial velocity at the instant that the first ball is at the ceiling. c. How
Gwar [14]

Answer:

hello your question has some missing parts

A juggler performs in a room whose ceiling is 3 m above the level of his hands. He throws a ball vertically upward so that it just reaches the ceiling.

answer : c) 0.39 sec

               d)  2.25 m

               e) 1.92 m/sec

Explanation:

The initial velocity of the first ball = 7.67 m/sec ( calculated )

Time required for first ball to reach ceiling = 0.78 secs ( calculated )

Determine how long after the second ball is thrown do the two balls pass each other

Distance travelled by first ball downwards when it meets second ball can be expressed as : d = 1/2 gt^2 =  9.8t^2 / 2

hence d = 4.9t^2  ----- ( 1 )

Initial speed of second ball = first ball initial speed = 7.67 m/sec

3 - d = 7.67t - 4.9t  ---- ( 2 )

equating equation 1 and 2

3 = 7.67t   therefore t = 0.39 sec

Determine how far the balls are above the Juggler's hands ( when the balls pass each other )

form equation 1 ;

d = 4.9 t^2 = 4.9 *(0.39)^2 = 0.75 m

therefore the height the balls are above the Juggler's hands is

3 - d = 3 - 0.75 = 2.25 m

determine their velocities when the pass each other

velocity = displacement / time

velocity = d / t = 0.75 / 0.39 sec  = 1.92 m/sec

7 0
3 years ago
What is the<br> function of the<br> switch in an<br> electric circuit?
aliya0001 [1]

Answer:

A switch opens or closes the electrical circuit, turning the flow of electricity on or off.

Explanation:

3 0
3 years ago
Read 2 more answers
A point charge q is located at the center of a spherical shell of radius a that has a charge −q uniformly distributed on its sur
muminat

Answer:

a) E = 0

b) E =  \dfrac{k_e \cdot q}{ r^2 }

Explanation:

The electric field for all points outside the spherical shell is given as follows;

a) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

From which we have;

E \cdot  A =  \dfrac{{\Sigma Q}}{\varepsilon _{0}} = \dfrac{+q + (-q)}{\varepsilon _{0}}  = \dfrac{0}{\varepsilon _{0}} = 0

E = 0/A = 0

E = 0

b) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

E \cdot  A  = \dfrac{+q }{\varepsilon _{0}}

E  = \dfrac{+q }{\varepsilon _{0} \cdot A} = \dfrac{+q }{\varepsilon _{0} \cdot 4 \cdot \pi \cdot r^2}

By Gauss theorem, we have;

E\oint dS =  \dfrac{q}{\varepsilon _{0}}

Therefore, we get;

E \cdot (4 \cdot \pi \cdot r^2) =  \dfrac{q}{\varepsilon _{0}}

The electrical field outside the spherical shell

E =  \dfrac{q}{\varepsilon _{0} \cdot (4 \cdot \pi \cdot r^2) }= \dfrac{q}{4 \cdot \pi \cdot \varepsilon _{0} \cdot r^2 }=  \dfrac{q}{(4 \cdot \pi \cdot \varepsilon _{0} )\cdot r^2 }

k_e=  \dfrac{1}{(4 \cdot \pi \cdot \varepsilon _{0} ) }

Therefore, we have;

E =  \dfrac{k_e \cdot q}{ r^2 }

5 0
3 years ago
Other questions:
  • Strength of the electric force imagine two 1.0-g bags of protons, one at the earth's north pole and the other at the south pole.
    14·1 answer
  • A motorcycle stunt driver zooms off the end of a cliff at a speed of 30 meters per second. If he lands after 0.75 seconds, what
    11·1 answer
  • This is an example of using a hammer as a(n)
    7·2 answers
  • A fatigue test was conducted in which the mean stress was 50 MPa (7250 psi) and the stress amplitude was 225 MPa (32,625 psi).
    13·1 answer
  • Compare the practical uses and limitations of nuclear fission and fusion. Include in your answer a detailed description of the t
    14·1 answer
  • On earth which force is 10 to slow an object down
    11·1 answer
  • When you hold a cold glass of water in your warm hand, which way does the heat flow ?
    6·1 answer
  • Does thermal energy flow from warmer objects to cooler objects
    11·2 answers
  • Only Wednesdays <br> Pls help
    12·2 answers
  • What is the measurement of the venier calipers?<br>​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!