Answer with Explanation:
Echo depends on<em> "how sound waves are reflected back."</em> A hard object, like the walls of the multipurpose hall, <em>reflects sound waves well; </em>thus, Seema could easily hear her echo. In addition to this, the walls of the hall are also smooth and this further allows the sound waves to bounce. On the other hand, soft objects like bed cushions in Seema's room<em> absorbs sound.</em> This prevents the sound waves from being reflected. In addition to this, the sound waves have hard time bouncing because there are many objects in Seema's room.
Answer:
0.64 J/g°C
Explanation:
Using the formula;
Q = m × c × ∆T
Where;
Q = amount of heat
m = mass (g)
c = specific heat capacity
∆T = change in temperature (°C)
In this case:
Q (water) = - Q (metal)
mc∆T (water) = - mc∆T (metal)
According to the information in this question,
For water; m = 100g, c = 4.18J/g°C, ∆T = (25°C - 20°C)
For metal; m = 50g, c =?, ∆T = (25°C - 90°C)
mc∆T (water) = - mc∆T (metal)
100 × 4.18 × (25°C - 20°C) = - {50 × c × (25°C - 90°C)}
100 × 4.18 × 5 = - {50 × c × -65}
2090 = -{-3250c}
2090 = 3250c
c = 2090/3250
c = 0.643
c = 0.64J/g°C
https://mrsstowell.weebly.com/uploads/5/1/4/6/51460659/hsav_riverdale.k12.wi.us_20160330_092123.pdf
Answer:
If a chord had notes with frequencies of 100, 1,000, and 6,000 Hz, the basilar membran would vibrate at multiple positions, with peaks at A, B, and C.
Explanation:
Answer:
(a) The "angular speed" is 5.88 rad/s.
Explanation:
Given values,
The length of the bar is L = 2m
The weight of the bar is w = 90 N
The metal bar is hanging vertically from the ceiling by a frictionless pivot
The mass of the ball is m = 3kg
The distance between the ceiling and the ball is d = 1.5m


(a) Calculating the angular speed:




The angular speed is 5.88 rad/s.
(b) The "angular momentum" is conserved because the torque is not exerted by "the pivot" on the system about the "axis of rotation" but the "linear momentum" is not conserved because "the pivot" exerts a "vertical" and a "horizontal force" on the system during the collision.