Answer:

Explanation:
The weight of an object on Earth is given by
, so we can calculate its mass by doing
, which for our values is:

<em>Nothing is being asked</em> about Io but if one wanted to know the weight <em>W'</em> of the watermelon there one just have to do:

Answer:
El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.
Explanation:
El gasto es el flujo volumétrico de gasolina (
), medido en pies cúbicos por segundo, que sale de la manguera. Asumiendo que la velocidad de salida es constante, tenemos que el gasto a través de la manguera es:
(1)
Donde:
- Diámetro de la manguera, medido en pies.
- Velocidad medida de salida, medida en pies por segundo.
Si sabemos que
y
, entonces el gasto de gasolina es:


El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.
Answer:
option C
Explanation:
given,
Force on the object = 10 N
distance of push = 5 m
Work done = ?
we know,
work done is equal to Force into displacement.
W = F . s
W = 10 x 5
W = 50 J
Work done by the object when 10 N force is applied is equal to 50 J
Hence, the correct answer is option C
The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>
Answer: 62 μT
Explanation:
Given
Length of rod, l = 1.33 m
Velocity of rod, v = 3.19 m/s
Induced emf, e = 0.263*10^-3 V
Using Faraday's law, the induced emf of a rod can be gotten by the formula
e = blv where,
e = induced emf of the rod
b = magnetic field of the rod
l = length of the rod
v = velocity of the rod. On substituting, we have
0.263*10^-3 = b * 1.33 * 3.19
0.263*10^-3 = b * 4.2427
b = 0.263*10^-3 / 4.2427
b = 0.0000620 T
b = 62 μT
Thus, the strength of the magnetic field is 62 μT