The brown hair for sure :)
The Resistance is directly proportional to conductor length. Therefore 30% increase in wire length will increase the resistance by 30%.
Question
What is the length of the pipe?
Answer:
(a) 0.52m
(b) f2=640 Hz and f3=960 Hz
(c) 352.9 Hz
Explanation:
For an open pipe, the velocity is given by

Making L the subject then

Where f is the frequency, L is the length, n is harmonic number, v is velocity
Substituting 1 for n, 320 Hz for f and 331 m/s for v then

(b)
The next two harmonics is given by
f2=2fi
f3=3fi
f2=3*320=640 Hz
f3=3*320=960 Hz
Alternatively,
and 

(c)
When v=367 m/s then

A (b) would be 42 (c) from x to Y mark me as brainlist thanks
Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ =
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ =
v₂ = 15.24 m / s