Answer:
The tension in the string connecting block 50 to block 51 is 50 N.
Explanation:
Given that,
Number of block = 100
Force = 100 N
let m be the mass of each block.
We need to calculate the net force acting on the 100th block
Using second law of newton



We need to calculate the tension in the string between blocks 99 and 100
Using formula of force


We need to calculate the total number of masses attached to the string
Using formula for mass


We need to calculate the tension in the string connecting block 50 to block 51
Using formula of tension

Put the value into the formula



Hence, The tension in the string connecting block 50 to block 51 is 50 N.
To find out how much work he has done, we must first calculate force using the force formula (F= Mass*Acceleration). In this case, mass is 79.4 and acceleration is the gravitational constant of 9.8m/s, plugging this into the formula we find that force is 778.12Newtons. Next, we need to multiply force by the distance to get the amount of energy used to lift his partner once. Which is 778.12 * .945 = 735.32. Finally, we need to multiply 735.32 by the number of times he lifts his partner, 33, to get 735.32 * 33 to find that the energy he has expended 24,265.56 Joules of energy.
Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!
Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:

where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:






Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

So, for our vectors:


To find the magnitude of this vector, we can use the Pythagorean Theorem



And this is the magnitude we are looking for.