Answer:
C
Explanation:
First the water heats up to the boiling point ( temp increases)
then, as it boils it remains at constant temp ( boiling point)
well in my own words, i'd saw the the doppler effect is similar to light because sound has a speed, and light does too.
so my theory is if you go fast enough everything would just become black, or maybe white? idk its hard to explain
but what my point is, is taht the doppler effect works in the same way, like if a car is moving towards you the sound is being emitted from the car and being pushed by the speed of the car making it have a much higher pitch, when the car is going away however it drops to a lower pitch due the the sound waves being DRAGGED by the car.
there hoped this helped I guess
Answer:
Coefficient of friction will be 0.587
Explanation:
We have given mass of the car m = 500 kg
Distance s = 18.25 m
Initial velocity of the car u = 14.5 m/sec
As the car finally stops so final velocity v = 0 m/sec
From second equation of motion



We know that acceleration is given by



So coefficient of friction will be 0.587
When gases, fluids, or other solids are in contact with a moving object
heat is produced due to friction.
Answer:
65.73N
Explanation:
The frictional force is a force that opposes the motion of an object on a flat surface or an inclined surface.
It is always acting up an incline plane .
Since the pipe will tend to roll up the plane, then both the impending force P also known as frictional force and the moving force Fm both will be acting up the plane.
The net force acting up the plane is
Fnet = P + Fm... (1)
The force perpendicular to the plane known as the normal reaction R must be equal to the force acting along the ramp in other to keep the body in equilibrium i.e R = Fnet
If R = W = mgcos (theta)
and Fm = mgsin(theta)
Then mgcos theta = Fnet
mgcos (theta) = P+Fm
mgcos (theta) = P+mgsin(theta)
P = mgcos (theta) - mgsin(theta)... (2)
Given mass = 10kg
g = 9.81m/s
We can get theta from the formula;
µ = Ff/R = wsin theta/wcos theta
µ = sin theta/cos theta
µ = tan(theta)
0.3 = tan (theta)
theta = arctan0.3
theta = 16.7°
P = 10(9.81)cos16.7° - 10(9.81)sin16.7°
P = 98.1(cos16.7°-sin16.7°)
P = 98.1(0.67)
P = 65.73N
The minimum force P required to cause impending motion is 65.73N