1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
2 years ago
7

13. Describe the molecules of a solid in terms of kinetic energy.

Physics
1 answer:
Y_Kistochka [10]2 years ago
3 0
The kinetic molecular theory of matter states that: ... Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.
You might be interested in
If you were on a ship at sea, and a tsunami passed under your ship, what would probably be your reaction? explain.
swat32
<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
6 0
3 years ago
A gasoline tank has the shape of an inverted right circular cone with base radius 4 meters and height 5 meters. Gasoline is bein
RSB [31]

Answer:

h'=0.25m/s

Explanation:

In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).

So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of 8m^{3}/s. As you  may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

V_{cone}=\frac{1}{3} \pi r^{2}h

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.

If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

\frac {r}{h}=\frac{4}{5}

When solving for r, we get:

r=\frac{4}{5}h

so we can substitute this into our volume of a cone formula:

V_{cone}=\frac{1}{3} \pi (\frac{4}{5}h)^{2}h

which simplifies to:

V_{cone}=\frac{1}{3} \pi (\frac{16}{25}h^{2})h

V_{cone}=\frac{16}{75} \pi h^{3}

So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

\frac{dV}{dt}= \frac{16}{75} \pi (3)h^{2} \frac{dh}{dt}

Which simplifies to:

\frac{dV}{dt}= \frac{16}{25} \pi h^{2} \frac{dh}{dt}

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)

So we get:

\frac{dh}{dt}= \frac{(dV/dt)(25)}{16 \pi h^{2}}

Now we can substitute the provided values into our equation. So we get:

\frac{dh}{dt}= \frac{(8m^{3}/s)(25)}{16 \pi (4m)^{2}}

so:

\frac{dh}{dt}=0.25m/s

3 0
3 years ago
Starting from rest, a person runs with a constant acceleration, traveling 40 meters in 10 seconds. What is their final velocity?
Assoli18 [71]

Answer:

Final velocity v = 8.944 m/sec

Explanation:

We have given distance S = 40 meters

Time t = 10 sec

As it starts from rest so initial velocity u = 0

From second equation of motion s=ut+\frac{1}{2}at^2

40=0\times 10+\frac{1}{2}a10^2

a=0.8944m/sec^2

Now from first equation of motion v=u+at, here v is final velocity, u is initial velocity, a is acceleration and t is time

So v=u+at=0+0.8944\times 10=8.944m/sec

6 0
3 years ago
The formula shown below is used to calculate the energy released when a specific quantity of fuel is burned. Calculate the energ
olya-2409 [2.1K]

Answer: 8400 J

Explanation:

The formula referenced in the question is:

Q=m. c. \Delta T  

Where:

Q  is the thermal energy

m=100g \frac{1 kg}{1000 g}=0.1 kg is the mass  of the water sample

c=4200 \frac{J}{kg\°C}  is the specific heat capacity of  water

\Delta T=20\°C  is the variation in temperature

Solving:

Q=(0.1 kg)(4200 \frac{J}{kg\°C})(20\°C)  

Q=8400 J  This is the thermal energy released

8 0
3 years ago
2. Draw a ray diagram that shows the image
Lunna [17]

you have to draw diagram

6 0
3 years ago
Other questions:
  • A rocket moves through outer space at 11,000 m/s. At this rate, how much time would be required to travel the distance from Eart
    8·1 answer
  • If a bird applies a 5 N upward force on a branch to lift the branch of ground to a
    11·1 answer
  • Laminar flow, where water moves in approximately straight-line paths, characterizes ________.
    14·1 answer
  • A velocity selector is built with a magnetic field of magnitude 5.2 T and an electric field of strength 4.6 × 10 ^4 N/C. The dir
    15·2 answers
  • The density of ice is 917 kg/m3, and the density of sea water is 1025 kg/m3. A swimming polar bear climbs onto a piece of floati
    15·1 answer
  • Does the moon control the waves in the ocean?
    13·2 answers
  • Explain why it is important that the balloon is made from an electrical insulator.
    13·1 answer
  • Find the ratio of the diameter of aluminium to copper wire, if they have the same
    12·1 answer
  • Human impact on the environment
    10·1 answer
  • Kindly answer the question about Work and Power. Image is attached below.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!