The answer is Solvent. The reason is in the wording, 'the substance that does the dissolving.' A solvent does the dissolving, a solute is something that can be dissolved.
Mass of a sample of gas doesn't change, no matter what happens to its pressure, volume, or temperature.
Answer:
h’ = 1/9 h
Explanation:
This exercise must be solved in parts:
* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy
starting point. Higher
Em₀ = U = m g h
final point. Lower, just before the crash
Em_f = K = ½ m
energy is conserved
Em₀ = Em_f
m g h = ½ m v²
v_b =
* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved
initial instant. Just before the crash
p₀ = 2m 0 + m v_b
final instant. Right after the crash
p_f = (2m + m) v
the moment is preserved
p₀ = p_f
m v_b = 3m v
v = v_b / 3
v = ⅓ 
* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together
Starting point. Lower
Em₀ = K = ½ 3m v²
Final point. Higher
Em_f = U = (3m) g h'
Em₀ = Em_f
½ 3m v² = 3m g h’
we substitute
h’=
h’ =
h’ = 1/9 h
That's the "Atomic Mass" of the atom.
PART a)
here when stone is dropped there is only gravitational force on it
so its acceleration is only due to gravity
so we will have

Part b)
Now from kinematics equation we will have

now we have
y = 25 m
so from above equation


Part c)
If we throw the rock horizontally by speed 20 m/s
then in this case there is no change in the vertical velocity
so it will take same time to reach the water surface as it took initially
So t = 2.26 s
Part D)
Initial speed = 20 m/s
angle of projection = 65 degree
now we have




PART E)
when stone will reach to maximum height then we know that its final speed in y direction becomes zero
so here we can use kinematics in Y direction



so it will take 1.85 s to reach the top