The Moon is 3.8 108 m from Earth and has a mass of 7.34 1022 kg. 5.97 1024 kg is the mass of the Earth.
<h3>What kind of gravitational pull does the moon have on the planet?</h3>
On the surface of the Moon, the acceleration caused by gravity around 1.625 m/s2 which is 16.6% greater than on the surface of the Earth 0.166.
<h3>What does the Earth's center's gravitational pull feel like?</h3>
Gravity is zero if you are in the centre of the earth since everything around you is pulling "up" (up is the only direction).
<h3>Where is the Earth's and the moon's gravitational centre?</h3>
It is around 1700 kilometres below Earth's surface.
To know more about gravitational force visit:-
brainly.com/question/12528243
#SPJ4
The other nation will get mad at the other nation and they could start a war
................................................................
GPE= weight•height= 15 N• 0.22meter= 3.3 Joules
I hope this helps ~~Charlotte~~
Answer:
1.170*10^-3 m
3.23*10^-32 m
Explanation:
To solve this, we apply Heisenberg's uncertainty principle.
the principle states that, "if we know everything about where a particle is located, then we know nothing about its momentum, and vice versa." it also can be interpreted as "if the uncertainty of the position is small, then the uncertainty of the momentum is large, and vice versa"
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
If we make Δx the subject of formula, by rearranging, we have
Δx = h / 4π * m(e).Δv
on substituting the values, we have
for the electron
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 5.67*10^-31
Δx = 1.170*10^-3 m
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.033*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 0.021
Δx = 3.23*10^-32 m
therefore, we can say that the lower limits are 1.170*10^-3 m for the electron and 3.23*10^-32 for the bullet