Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
Answer:
v ’= v + v₀
a system can be another vehicle moving in the opposite direction.
Explanation:
In an inertial reference frame the speed of the vehicle is given by the Galileo transformational
v ’= v - v₀
where v 'is the speed with respect to the mobile system, which moves with constant speed, v is the speed with respect to the fixed system and vo is the speed of the mobile system.
The vehicle's speedometer measures the harvest of a fixed system on earth, in this system v decreases, for a system where v 'increases it has to be a system in which the mobile system moves in the negative direction of the x axis, whereby the transformation ratio is
v ’= v + v₀
Such a system can be another vehicle moving in the opposite direction.
Answer:
his results in the final angle after the collision of 37.2 degrees basically what we did there is turn the vector into a right triangle. We use sohcahtoa to solve for the angle. Being.
Explanation:
Answer:17.08 s
Explanation:
Given
distance between First and second Runner is 45.6 m
speed of first runner
=3.1 m/s
speed of second runner
=4.65 m/s
Distance between first runner and finish line is 250 m
Second runner need to run a distance of 250+45.6=295.6 m
Time required by second runner 
time required by first runner to reach finish line
Thus second runner reach the finish line 80.64-63.56=17.08 s earlier