If a shark can travel 15 miles per second, then it can go 150 miles in 10 seconds.
Answer:
<em>The velocity after 12s is 50.4m/s</em>.
Explanation:
<em>In acceleration formula make velocity the </em><em>subject.</em>
<em> acceleration(a) = velocity(</em>v)÷time(t)
<h3><em> </em><em>velocity</em><em> </em><em>(</em><em>v)</em><em> </em><em>=</em><em> </em><em>acceleration</em><em>(</em><em>a)</em><em>×</em><em>t</em><em>ime</em><em>(</em><em>t)</em></h3>
<em>V </em><em>=</em><em> </em><em>4</em><em>.</em><em>2</em><em>m</em><em>/</em><em>s²</em><em>×</em><em>1</em><em>2</em><em>s</em>
<em>V </em><em>=</em><em> </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s</em>
<em>Therefore</em><em> the</em><em> </em><em>velocity</em><em> </em><em>after</em><em> </em><em>1</em><em>2</em><em>s</em><em> </em><em>is </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s.</em>
Answer:
5 m/s2
Explanation:
The total acceleration of the circular motion is made of 2 components: centripetal acceleration and linear acceleration of 4 m/s2. They are perpendicular to each other.
The centripetal acceleration is the ratio of instant velocity squared and the radius of the circle
![a_c = \frac{v^2}{r} = \frac{30^2}{300} = \frac{900}{300} = 3 m/s^2](https://tex.z-dn.net/?f=a_c%20%3D%20%5Cfrac%7Bv%5E2%7D%7Br%7D%20%3D%20%5Cfrac%7B30%5E2%7D%7B300%7D%20%3D%20%5Cfrac%7B900%7D%7B300%7D%20%3D%203%20m%2Fs%5E2)
So the magnitude of the total acceleration is
![a = \sqrt{a_c^2 + a_l^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 m/s^2](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%7Ba_c%5E2%20%2B%20a_l%5E2%7D%20%3D%20%5Csqrt%7B3%5E2%20%2B%204%5E2%7D%20%3D%20%5Csqrt%7B9%20%2B%2016%7D%20%3D%20%5Csqrt%7B25%7D%20%3D%205%20m%2Fs%5E2)
The direction is the same as the direction the ball is moving in. Because of the rolling of the ball, the direction of movement of the surface of the ball is opposite the overall direction of the ball. Since friction will oppose the direction of movement of the surface of the ball, it is in the same direction as the net direction of movement of the ball.
Answer:
Rita and Katrina both followed similar paths into the Gulf.
Explanation: