If you take a fluid (i.e. air or water) and heat it, the portion that is heated usually expands. The same mass takes up more volume and as a consequence the heated portion becomes less dense than the portion that is<span><span> not heated.</span> </span>
Answer:
Bohr's greatest contribution to modern physics was the atomic model. ... Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element
Explanation:
See projectiles are very simple unless you understand its core concepts....projectile is nothing just mixture of upward motion and horizontal motion....
THE KEY IS FORGET THE NAME PROJECTILE...ITS JUST HORIZONTAL MOTION + VERTICAL MOTION
Answer:
Kinda? Depends what the question is fully asking
Explanation:
Acceleration is a change in velocity. So I guess if the velocity of something is -2 m/s and its positively accelerating at a value of +1 m/s, then that means every second its velocity changes by +1m/s.
So that -2 m/s thing after one second will be going -1 m/s.
After another second it'll be going 0 m/s.
After another itll be going +1 m/s and so on.
So at one point for a brief moment, it can have an acceleration but be at 0 m/s velocity.
To solve this exercise, it is necessary to apply the concepts of conservation of the moment especially in objects that experience an inelastic colposition.
They are expressed as,
Where,
= mass of the skier
= mass of the cat
= initial velocity of skier
= initial velocity of cat
= final velocity of both
Re-arrange to find V_f we have,
Once the final velocity is found it is possible to calculate the change in kinetic energy, so
Therefore the amount of kinetic energy converted in to internal energy is 819J