Answer:
The magnitude of the force required to move the electron through the given field is 2.203 N
Explanation:
Given;
The field strength of the electron, E = 1.375 x 10¹⁹ N/C
charge of electron, q = 1.602 x 10⁻¹⁹ C
The magnitude of the force required to move the electron through the given field is calculated as follows;
F = Eq
F = (1.375 x 10¹⁹ N/C) (1.602 x 10⁻¹⁹ C)
F = 2.203 N
Therefore, the magnitude of the force required to move the electron through the given field is 2.203 N
So we want to know what is the purpose of a lanyard attached to a safety switch. So in case the operator falls overboard a safety switch is installed and connected to the operators hand or waist. Which ever is more practical. This safety switch turns off the motor.
Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is 
The speed of A is 
The uniform acceleration of B is 
Generally the time taken by go-cart A is mathematically represented as
=> 
=> 
Generally from kinematic equation we can evaluate the time taken by go-cart B as

given that go-cart B starts from rest u = 0 m/s
So

=>
=>
Comparing
we see that
is smaller so go-cart A is faster
Answer:
22Volts
Explanation:
The pd at the terminal is known as the emf
Since there are Ten 2.2V cells
Terminal voltage = number of cells * pd of one cell
Terminal voltage = 10 * 2.2
Terminal voltage = 22V
Hence the pd at the battery terminals is 22Volts
Carbon is one of the main building blocks of life. This is what carbon dating is so effective, because scientists are able to tell the approximate age of something that was once alive given how much carbon is still in the animal.
<span />