Answer:
W= 4.4 J
Explanation
Elastic potential energy theory
If we have a spring of constant K to which a force F that produces a Δx deformation is applied, we apply Hooke's law:
F=K*x Formula (1): The force F applied to the spring is proportional to the deformation x of the spring.
As the force is variable to calculate the work we define an average force
Formula (2)
Ff: final force
Fi: initial force
The work done on the spring is :
W = Fa*Δx
Fa : average force
Δx : displacement
:Formula (3)
: final deformation
:initial deformation
Problem development
We calculate Ff and Fi , applying formula (1) :
![F_{f} = K*x_{f} =22\frac{N}{m} *0.7m =15.4N](https://tex.z-dn.net/?f=F_%7Bf%7D%20%3D%20K%2Ax_%7Bf%7D%20%3D22%5Cfrac%7BN%7D%7Bm%7D%20%2A0.7m%20%3D15.4N)
![F_{i} = K*x_{i} =22\frac{N}{m} *0.3m =6.6N](https://tex.z-dn.net/?f=F_%7Bi%7D%20%3D%20K%2Ax_%7Bi%7D%20%3D22%5Cfrac%7BN%7D%7Bm%7D%20%2A0.3m%20%3D6.6N)
We calculate average force applying formula (2):
![F_{a} =\frac{15.4N+6.2N}{2} = 11 N](https://tex.z-dn.net/?f=F_%7Ba%7D%20%3D%5Cfrac%7B15.4N%2B6.2N%7D%7B2%7D%20%3D%2011%20N)
We calculate the work done on the spring applying formula (3) : :
W= 11N*(0.7m-0.3m) = 11N*0.4m=4.4 N*m = 4.4 Joule = 4.4 J
Work done in stages
Work is the change of elastic potential energy (ΔEp)
W=ΔEp
ΔEp= Epf-Epi
Epf= final potential energy
Epi=initial potential energy
![E_{pf} =\frac{1}{2} *k*x_{f}^{2}](https://tex.z-dn.net/?f=E_%7Bpf%7D%20%3D%5Cfrac%7B1%7D%7B2%7D%20%2Ak%2Ax_%7Bf%7D%5E%7B2%7D)
![E_{pi} =\frac{1}{2} *k*x_{i}^{2}](https://tex.z-dn.net/?f=E_%7Bpi%7D%20%3D%5Cfrac%7B1%7D%7B2%7D%20%2Ak%2Ax_%7Bi%7D%5E%7B2%7D)
![E_{pf} =\frac{1}{2} *22*0.7^{2} = 5.39 J](https://tex.z-dn.net/?f=E_%7Bpf%7D%20%3D%5Cfrac%7B1%7D%7B2%7D%20%2A22%2A0.7%5E%7B2%7D%20%3D%205.39%20J)
![E_{pf} =\frac{1}{2} *22*0.3^{2} = 0.99 J](https://tex.z-dn.net/?f=E_%7Bpf%7D%20%3D%5Cfrac%7B1%7D%7B2%7D%20%2A22%2A0.3%5E%7B2%7D%20%3D%200.99%20J)
W=ΔEp= 5.39 J-0.99 J = 4.4J
: