<span>D. density is your answer</span>
Answer:


Explanation:
Given that height of the projectile as a function of time is

here we know that
h = 147 ft
so from above equation


now by solving above quadratic equation we know that


20-60minutes
Explanation:
Within 10-20minutes after a drink is consumed all of the alcoholic content has probably been absorbed into body.
Alcohol is absorbed into the body much more fast.
- It does not undergo digestion process like food.
- It can easily be absorbed into the blood stream.
- Alcohol is readily absorbed and carried round into the body.
- It doesn't get processed like food in the body where they pass through the digestive system.
- The body sees alcohol as nutrient.
- It carries it to the brain and other parts of the body.
learn more;
Alcohol brainly.com/question/4541397
#learnwithBrainly
Answer:
The items here are describing either a condition in a later interacton or a protogalactic cloud. The results matching with spiral and elliptical galaxy are:
For spiral galaxy are options 6,3,2 and 5.
and for elliptical galaxy are options 4 and 1.
Explanation:
Here it is given that astrnomers suspect that types of galaxy can be affected both by the conditions which occurs due to protogalactic cloud and then from it forms the initial conditions and then by the later interactions with the other galaxies.
so, both types of galaxies are matched with their respective items given:
A. Spiral galaxy:
2. A galaxy collision results tostripping of gas.
3. The protogalactic cloud rotates in a very slow motion.
5. The density of protogalactic cloud is very high.
6. when the protogalactic cloud shrinks cloud forms very rapidly.
B. Elliptical galaxy:
1. The protogalactic cloud has high angular momentum.
4. Most of the protogalactic gases settles down into a disk.
We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d: