Answer:
a) 4.31 m/s²
b) 215.5 m
Explanation:
a) According to Newton's first law of motion
The net force applied to particular mass produced acceleration, a, according to
F = ma
F = 140 N
m = 32.5 kg
a = ?
140 = 32.5 × a
a = 140/32.5 = 4.31 m/s²
b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s
u = initial velocity of the probe = 0 m/s (since it was initially at rest)
a = 4.31 m/s²
t = 10 s
s = distance travelled = ?
s = ut + at²/2
s = 0 + (4.31×10²)/2 = 215.5 m
Mass (m)=55kg
acceleration (a)=9.81 m/s^2, this is the acceleration due to gravity.
initial velocity=0m/s. The skydiver doesn’t start with any speed because she is on the plane or helicopter.
final velocity=16m/s This is the velocity (speed) the skydiver reaches
The equation we use is KE=.5mv^2
Kinetic energy=.5 mass x velocity^2
KE=.5(55kg)(16m/s)^2
KE=.5(55kg)(256m/s)
KE=.5(14080J)
J=Joules
KE=7040J
Kinetic energy is 7040 Joules (J)
Hope this helps
(3) The frictional force exerted by the floor on the box
One is chemo. Chemo is a special magnetic field like to treat cancer
A perfectly elastic<span> collision is defined as one in which there is no loss of </span>kinetic energy<span> in the collision. Therefore, we just add the kinetic energies of each system. We calculate as follows:
KE = 0.5(</span>1.0 × 10^3)(12.5 )^2 + 0.5(1.0 × 10^3)(12.5 )^2
KE = 156250 J = 1.6 x 10^5 J -------> OPTION A