The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer: A) Transformer
Explanation: A Transformer is an apparatus, device or a component in a system that is used to convert high voltage into low voltage. It is used to either increase or decrease the voltage of an alternating current.
A transformer uses the basic principle of electro magnetic induction, having two or more coils, the voltage is changed from one coil to another but with thesame frequency as alternating current energy passes through them.
Answer:
Average speed = 0.35 m/s
Explanation:
Given the following data;
Distance = 1.3 Km
Time = 62 minutes
To find the average speed in m/s;
First of all, we would convert the quantities to their standard unit (S.I) of measurement;
Conversion:
1.3 kilometres to meters = 1.3 * 1000 = 1300 meters
For time;
1 minute = 60 seconds
62 minutes = X
Cross-multiplying, we have;
X = 62 * 60
X = 3720 seconds
Now, we can calculate the average speed in m/s using the formula;


Average speed = 0.35 m/s
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease
The first law of thermodynamics states that energy cannot be created nor destroyed. It can be transformed from one form of energy to another, but the energy in an isolated system remains constant.
The answer then would be letter B. False.