Chemical properties of elements are primarily determined by the electrons but not by neutrons. Therefore, the isotopes of the same element have similar chemical behavior. (a) The atomic number is 17, so there are 17 protons and 17 electrons. The mass number is 35, so there are 18 (=35-17) neutrons. Hope this helps. :)
Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.
The correct answer is the last option. When <span>Zac releases the air from a balloon, it will expand to fill the room. It will not expand in the sense that molecules will be big but the molecules will be more spread out into the room and more air molecules will be present to fill the room.</span>
So platinum is a transition metal. In general transition metals are reducers, which means they can give the electrons they have, to the sodium atoms. Also in chemistry we look at sub orbitals rather that shells(2,8,8). So due to the energy from heat, the d orbital split as electrons move to a higher energy level. Some of the electrons are given to the sodium ions and therefore the flame changes colour to yellow.
The excitation of the electrons is caused by them getting energy and so moving up an energy level. This energy is released and the electron returns to it's original state. The energy released, however, does not release in the same direction, but in different/various directions. Therefore the colour of the light changes as some energy is released in the surrounding.
It is two or more objects and different things that can be removed from each other.