Chemical reactions happen when two or more atoms go together to form molecules or when Atoms brake
Answer:
a) ΔH°rxn = -9.2kJ/mol
b) ΔH°rxn = -9.2kJ/mol
Explanation:
Using Hess's law, you can find ΔH of a reaction from ΔH of formation of the substances involved in the reaction, thus:
ΔH°rxn = ∑(BE(reactants)) − ∑(BE(products))
Or:
ΔH°rxn = ∑(nΔH°f (products)) − ∑(mΔH°f (reactants))
For the reaction:
H₂(g) + I₂(g) → 2HI(g)
a) Using the first equation:
ΔH°rxn = ΔH (H-H) + ΔH (I-I) - 2ΔHBE (H-I)
ΔH°rxn = 436.4kJ + 151kJ - 2×298.3kJ
<em>ΔH°rxn = -9.2kJ/mol</em>
<em />
b) Using the second equation:
ΔH°rxn = 2Δ°f (HI) − ΔH°f (H₂) - ΔH°f (I₂)
ΔH°rxn = 2×25.9kJ - 0kJ - 61.0kJ
<em>ΔH°rxn = -9.2kJ/mol</em>
<em />
Answer: 
Explanation
Combustion is a chemical reaction in which hydrocarbons are burnt in the presence of oxygen to give carbon dioxide and water.
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced combustion reaction for butane is,:

Answer:
Almost everything in our surroundings represent chemical change
Explanation:
●Rusting of iron in presence of moisture and oxygen.
●Burning of wood.
●Milk becoming curd.
●Formation of caramel from sugar by heating.
●Baking of cookies and cakes.
●Cooking any food.
●Acid-base reaction.
●Digestion of food.
Answer:
The electrons are supplied by the species getting oxidized. They move from anode to the cathode in the external circuit. The external battery supplies the electrons. They enter through the cathode and come out through the anode