<span>Answer:
Enthalpy Change = (6 x -393.5) + (7 x -285.8) - (-204.6) + (19/2) 0.....???
like.. (6 x Enth CO2) + ( 7 x Enth H2O) - (Enth C6H14) + (19/2) Enth O2</span>
Answer:
= 10000000000000 Nanoliters
Explanation:
1.0 x (10^4) L =
10 000 L
10 000L converted into Nanoliters
= 10000000000000 Nanoliters
Hope this helps
Answer:
2.09 atm
Explanation:
We can solve this problem by using the equation of state for an ideal gas, which relates the pressure, the volume and the temperature of an ideal gas:

where
p is the pressure of the gas
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature
In this problem we have:
n = 0.65 mol is the number of moles of the gas
V = 8.0 L is the final volume of the gas
is the temperature of the gas
is the gas constant
Solving for p, we find the final pressure of the gas:

Silicon has 14 protons and it should have at least 12 neutrons
hi have a nice day
will be less than 26 °C as water has a relatively higher specific heat than sand.
Explanation:
The specific heat of a substance is the amount of heat energy absorbed by one unit of mass of the substance when its temperature increases one unit.
From that, you can derive the equation for the specific heat of a substance:
specific heat = heat / (mass × ΔT)
Thus, assuming that all the heat provided by the lamp to both samples is the same and, as given, the amount (mass) of both samples is also the same, you have that the specific heat of the samples will be:
specific heat = constant / ΔT
So, specific heat and ΔT are inversely related.
It is known that water has a higher specific heat than sand (that is why the sand on the shore of a beach is, during the day, hotter than the water and your feet get burned when you walk on a sandy beach on a sunny day