Answer:
x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
Step-by-step explanation:
Firstly let us split this up, we need to first work out what g(h(x)) is:
h(x) = Sqrt(x) so g(h(x)) = g(sqrt(x)) = sqrt(x) - 2
Now to work out f(g(h(x))) = f(sqrt(x) - 2) = (sqrt(x) - 2)^4 + 6
= (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) - 6
= (x - 2 * sqrt(x) + 4) * (x - 2 * sqrt(x) + 4) - 6
= x^2 - 2x * sqrt(x) + 4x - 2x * sqrt(x) + 4x - 8 * sqrt(x) + 4x - 8 * sqrt(x) + 16 - 6
= x^2 - 4x * sqrt(x) + 12x - 16 * sqrt(x) + 10
= x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
If there are 20 rows each and 15 per row then you would multiply 20(15) = 300 then so there are 300 seats in Section J. each seat is 18$ so you would multiply 300(18) = 5400 so section J would get 5,400$ if it were to be sold out. The equation is 20(15)=300(18)=5400
A function works like this:
You put any number you want into the input, and
the output depends on the number you put it.
That's why the output is the dependent variable.
The first equation is 
(Equation 1)
The second equation is
(Equation 2)
Putting the value of x from equation 1 in equation 2.
we get,


by simplifying the given equation,


Using discriminant formula,


Now the formula for solution 'x' of quadratic equation is given by:


Hence, these are the required solutions.
I think it would be D because it started off low then it started to increase