Answer:
One way to measure the volume of any irregular object (in your case, a stone) is to submerge it completely under water and measure the change in the height of the water level. This change in the water level (let's say it goes from 50 mL to 65 mL) indicates that the stone has a volume of 15 mL.
Following reaction occurs in the given electrochemical system:

→ Fe +

Thus, under standard conditions
E(0) = E(0) Fe2+/Fe - E(0) Zn2+/Zn
where,

= standard reduction potential of Fe2+/Fe = -0.44 v

= standard reduction potential of Zn2+/Zn = -0.763 v
E(0) = 0.323 v
now, we know that, ΔG(0) =-nFE(0) ............... (1)
Also, Δ

On equating and rearranging equation 1 and 2, we get
K = exp(

)= exp (

) = 8.46 x
Answer:
PV=nRT where P=pressure in atm, V=volume is liters, n=numbber of moles, R=gas constant, 0.08206 L-atm/mole KL, and T=temperature in K (273 + C). So (5.67atm)(99.39L)=n(0.08206 L-atm/mol.K)(328.94K), solve for n, the number of moles, n=20.9 moles.
Explanation:
Answer:
36.4 atm
Explanation:
To find the pressure, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = ? atm R = 0.0821 L*atm/mol*K
V = 5.00 L T = 393 °C + 273.15 = 312.45 K
n = 7.10 moles
PV = nRT
P(5.00 L) = (7.10 moles)(0.0821 L*atm/mol*K)(312.45 K)
P(5.00 L) = 182.130
P = 36.4 atm
The answer here is letter C. The optimal solution. The optimal solution is the one that affects how certain things changes with sensitivity analysis. The optimal solution is a feasibility solution where the objective function of it is to reach the minimum and maximum value.