Answer:
%age Yield = 85.36 %
Solution:
The Balance Chemical Reaction is as follow,
C₆H₁₂O + Acid Catalyst → C₆H₁₀ + Acid Catalyst + H₂O
According to Equation ,
100 g (1 mole) C₆H₁₂O produces = 82 g (1 moles) of C₆H₁₀
So,
4.0 g of C₆H₁₂O will produce = X g of C₆H₁₀
Solving for X,
X = (4.0 g × 82 g) ÷ 100 g
X = 3.28 g of C₆H₁₀ (Theoretical Yield)
As we know,
%age Yield = (Actual Yield ÷ Theoretical Yield) × 100
%age Yield = (2.8 g ÷ 3.28 g) × 100
%age Yield = 85.36 %
Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion ).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!
Hey ! a highland is a area of high or mountainous land. you got this babe<333
Its the last answer #""_53∧131"I" #