Answer: 
Explanation:
The balanced chemical equation will be:

Here Ag undergoes oxidation by loss of electrons, thus act as anode. Nickel undergoes reduction by gain of electrons and thus act as cathode.

Where both
are standard reduction potentials.
![E^0_{[Ag^{+}/Mg]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FMg%5D%7D%3D%2B0.80V)
![E^0_{[Ni^{2+}/Ni]}=-0.25V](https://tex.z-dn.net/?f=E%5E0_%7B%5BNi%5E%7B2%2B%7D%2FNi%5D%7D%3D-0.25V)
![E^0=E^0_{[Ni^{2+}/Ni]}- E^0_{[Ag^{+}/Ag]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BNi%5E%7B2%2B%7D%2FNi%5D%7D-%20E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D)

The standard emf of a cell is related to Gibbs free energy by following relation:

= gibbs free energy
n= no of electrons gained or lost =?
F= faraday's constant
= standard emf

The Gibbs free energy is related to equilibrium constant by following relation:

R = gas constant = 8.314 J/Kmol
T = temperature in kelvin =
K = equilibrium constant



Thus the value of the equilibrium constant at
is 
The Everglades and the Louisiana wetan are the same
Answer:
A chemical equation is balanced when the number of each kind of atom is the same on both sides of the reaction.
Explanation:
The law of conservation of matter (except in nuclear reactions) indicates that atoms can neither be created or destroyed.
The number of atoms that are in the reactants must be the same as the number of the atoms that are in the product.
The number and types of molecules can (and will) change. The atoms that make up the molecules are rearranged but the number and kinds of atoms stay the same.
<span>Henry divides 1.060 g by 1.0 mL to find the density of his water sample.
</span>He should include THREE significant figures in the density value that hereports.
Answer:
a. Plum pudding model
Explanation:
The plum pudding model of the atom was proposed by J.J. Thomson. It was the model he derived from his experiment on the gas discharge tube.
J.J Thomson was the first person to discover electrons which he called cathode rays because in the discharge tube, they emanate from the cathode.
- This led him to suggest the plum pudding model of the atom.
- The model reflects electrons being surrounded by a volume of negative charges.