Answer:
The elements become less reactive.
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction and reactivity increases because of greater electron affinity.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased. The electron affinity decreases because of shielding effect and thus atom become less reactive.
The moles of any substance are equal to the substance's mass divided by its molar mass. Therefore, in order to calculate the moles of copper, you would divide the reacted mass by 63.55
Answer:
Rb2CO3(aq)+Fe(C2H3O2)2(aq)--> 2Rb(C2H3O2)(aq) + FeCO3(s)
Explanation:
The reaction shown in the answer is the reaction of rubidium carbonate and iron II acetate. Rubidium is far more reducing than Fe II hence it can displace Fe II from its salt as shown.
The reducing property of metals depends on the value of their individual electrode potential values. For rubidium, its standard reduction potential is -2.98 V while that of Fe II is -0.44V. Hence rubidium can displace Fe II from its salt as shown above.
The concentrations of a mixture at equilibrium are constant as a function of time because the <span>e forward reaction proceeds at the same rate as the reverse reaction.</span>