Answer:
-205.7kj
Explanation:
Now adding reaction 2 and twice of reaction 3 and reverse of reaction 1, we get the enthalpy of the reaction.
The expression for enthalpy for the following reaction will be,
where,
n = number of moles
Now put all the given values in the above expression, we get:
Therefore, the enthalpy of the following reaction is, -205.7kj
The properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
<h3>What is specific heat capacity?</h3>
The specific heat capacity is the property of a substance that shows how much its temperature changes when it is exposed to heat.
Thus, the properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
Missing parts:
A red-hot iron nail is immersed in a large bucket of water. Although the nail cools down sufficiently to be held bare-handed, the temperature of the water barely increases. Which properties keep the water temperature from changing much?
A.) water's high heat conductivity
B.) water's high specific heat capacity
C.) the iron nail's high heat conductivity
D.) the large mass of water
E.) the iron nail's high specific heat capacity
Learn more about heat capacity:brainly.com/question/12244241
#SPJ1
Answer:
Pressure = 1.14 atm
Explanation:
Hello,
This question requires us to calculate the final pressure of the bottle after thermal equilibrium.
This is a direct application of pressure law which states that in a fixed mass of gas, the pressure of a given gas is directly proportional to its temperature, provided that volume remains constant.
Mathematically, what this implies is
P = kT k = P / T
P1 / T1 = P2 / T2 = P3 / T3 =........= Pn / Tn
P1 / T1 = P2 / T2
P1 = 1.0atm
T1 = -15°C = (-15 + 273.15)K = 258.15K
P2 = ?
T2 = 21.5°C = (21.5 + 273.15)K = 294.65K
P1 / T1 = P2 / T2
P2 = (P1 × T2) / T1
P2 = (1.0 × 294.65) / 258.15
P2 = 1.14atm
The pressure of the gas after attaining equilibrium is 1.14atm
H₂SO₄:
V=0,95L
Cm=0,420mol/L
n = CmV = 0,42mol/L * 0,95L = 0,399mol
KOH:
V=0,9L
Cm=0,26mol/L
n = CmV = 0,26mol/L * 0,9L = 0,234mol
H₂SO₄ + 2KOH ⇒ K₂SO₄ + 2H₂O
1mol : 2mol
0,399mol : 0,234mol
limiting reagent
reamins: 0,399mol - 0,117mol = 0,282mol
n = 0,282mol
V = 0,950L + 0,900L = 1,85L
Cm = n / V = 0,282mol / 1,85L ≈ 0,152M