Radiation is a type of heat transfer wherein there is no need for medium or media through which the heat will flow. Consequently, the radiation waves are able to travel through vacuum. The best observation as evidence to conclude that heat is indeed transferred by radiation is the increase of temperature of the receiving body.
This question involves the concepts of orbital velocity and orbital radius.
The orbital velocity of ISS must be "7660.25 m/s".
The orbital velocity of the ISS can be given by the following formula:

where,
v = orbital velocity = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Earth = 5.97 x 10²⁴ kg
R = orbital radius = radius of earth + altitude = 63.78 x 10⁵ m + 4.08 x 10⁵ m
R = 67.86 x 10⁵ m
Therefore,

<u>v = 7660.25 m/s</u>
Learn more about orbital velocity here:
brainly.com/question/541239
I think the answer is B true
Answer:
187 J
Explanation:
First Law of Thermodynamics :
ΔQ = ΔW + ΔU
ΔQ : Heat. If it added to system then positive and if it is rejected by system then negative.
ΔW : Work. If it done by the system then positive and if it is done on system then negative.
ΔU : Internal Energy. If it positive then temperature of system increased and if it is negative then temperature of system decreased.
ΔQ = 79 J
ΔW = - 108 J
ΔU = ?
substituting the value in the equation:
79 = -108 + ΔU
∴ ΔU = 187 J
Answer:
The weight of an object is defined as the force of gravity on the object and may be calculated as the mass times the acceleration of gravity, w = mg.