Momentum = (mass) x (speed)
Momentum = (70 kg) x (10 m/s)
<em>Momentum = 700 kg-m/s</em>
a = 3.09 m/s²
<h3>Explanation</h3>
This question doesn't tell anything about how long it took for the car to go through 105 meters. As a result, the <em>timeless </em>suvat equation is likely what you need for this question.
In the <em>timeless</em> suvat equation,

where
is the acceleration of the car;
is the <em>final</em> velocity of the car;
is the <em>initial</em> velocity of the car; and
is the displacement of the car.
Note that <em>v</em> and <em>u</em> are velocities. Make sure that you include their signs in the calculation.
In this question,
Apply the <em>timeless</em> suvat equation:
.
The value of
is greater than zero, which is reasonable. Velocity of the car is negative, meaning that the car is moving backward. The car now moves to the back at a slower speed. Effectively it accelerates to the front. Its acceleration shall thus be positive.
Answer:
The energy that the truck lose to air resistance per hour is 87.47MJ
Explanation:
To solve this exercise it is necessary to compile the concepts of kinetic energy because of the drag force given in aerodynamic bodies. According to the theory we know that the drag force is defined by

Our values are:




Replacing,


We need calculate now the energy lost through a time T, then,

But we know that d is equal to

Where
v is the velocity and t the time. However the time is given in seconds but for this problem we need the time in hours, so,

(per hour)
Therefore the energy that the truck lose to air resistance per hour is 87.47MJ
Answer:
Regions near rivers have water surfaces that rapidly change in temperature from cold to hot.
you have your own answer i only selected which is suitable for me . none of them is wrong they re excellent
Answer:
Answer is C
Explanation:
Let's say the pendulum starts swinging from its max height from the left. It then will go down and reach the equilibrium position, this will make it lose GPE while gaining KE (the loss in GPE = gain in KE). At the equilibrium position it has the max KE (max velocity) and minimum GPE. After passing the equilibrium it then starts to head up to the max height on the right, the pendulum gains GPE while losing KE and at the top will have minimum KE while having max GPE. Meaning throughout its joruney the total energy remains constant as
Total energy = KE + GPE
I have attached a simple diagram below, the y axis is the energy and x axis being the time (where t = 0 is the pendulum starting from max height left of the equilibrium). The green curve the the GPE and blue curve is KE. Red line shows that at all times the energy is constant.