1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Keith_Richards [23]
3 years ago
13

What tends to exist in periodic table?

Physics
1 answer:
Goryan [66]3 years ago
5 0
The arrangement of the chemical elements, ordered by their atomic number, electron configuration , and recurring chemical properties.
You might be interested in
An object is placed in front of a convex lens of a length 10cm. What is the nature of the image formed if the object distance is
Lady_Fox [76]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Focal\:length=10\:cm}

\:\:\:\:\bullet\:\:\:\sf{Object \ distance = -15\:cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Nature \: of \:the\:image}

\\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

<h3>☯ <u>By using formula of Lens</u> </h3>

\\

\dashrightarrow\:\: {\boxed{\sf{\dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}}}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v}-\dfrac{1}{-15}=\dfrac{1}{10}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v}+\dfrac{1}{15}=\dfrac{1}{10}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v} = \dfrac{1}{10} - \dfrac{1}{15}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v} = \dfrac{1}{30}}

\\

\dashrightarrow\:\: \sf{ v = 30 \ cm}

\\

<h3>☯ <u>Now, Finding the magnification </u></h3>

\\

\dashrightarrow\:\: \sf{ m = \dfrac{-30}{-15}}

\\

\dashrightarrow\:\: \sf{m = -2}

\\

<h3>☯ <u>Hence</u>,\\</h3>

\:\:\:\:\star\:\:\:\sf{Image \ distance = 30 \ cm}

\:\:\:\:\star\:\:\:\sf{Nature = Real \ \& \ inverted}

3 0
3 years ago
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
3 years ago
A baseball leaves a bat with a horizontal velocity of 20 m/s. In a time of 0.25 s, How far will it have traveled horizontally?
Maurinko [17]

Distance traveled by the ball is given by

distance = speed \times time

here we know that

speed = 20 m/s

times = 0.25 s

now we have

distance = 20 \times 0.25

distance = 5 m

so ball will travel 5 m distance in the given interval of time

6 0
3 years ago
How will the motion of the arrow change after it leaves the bow?
Pavel [41]

The string moves to the right, as it restores its original position with the median plane of the bow. As a result, the string "pulls" on the arrow with a force F2. 2. The tip of the arrow T moves slightly to the left.

pls thank me and brainliest me

4 0
3 years ago
A radar for tracking aircraft broadcasts a 12 GHz microwave beam from a 2.0-m-diameter circular radar antenna. From a wave persp
NISA [10]

A) 750 m

First of all, let's find the wavelength of the microwave. We have

f=12GHz=12\cdot 10^9 Hz is the frequency

c=3.0\cdot 10^8 m/s is the speed of light

So the wavelength of the beam is

\lambda=\frac{c}{f}=\frac{3\cdot 10^8 m/s}{12\cdot 10^9 Hz}=0.025 m

Now we can use the formula of the single-slit diffraction to find the radius of aperture of the beam:

y=\frac{m\lambda D}{a}

where

m = 1 since we are interested only in the central fringe

D = 30 km = 30,000 m

a = 2.0 m is the aperture of the antenna (which corresponds to the width of the slit)

Substituting, we find

y=\frac{(1)(0.025 m)(30000 m)}{2.0 m}=375 m

and so, the diameter is

d=2y = 750 m

B) 0.23 W/m^2

First we calculate the area of the surface of the microwave at a distance of 30 km. Since the diameter of the circle is 750 m, the radius is

r=\frac{750 m}{2}=375 m

So the area is

A=\pi r^2 = \pi (375 m)^2=4.42\cdot 10^5 m^2

And since the power is

P=100 kW = 1\cdot 10^5 W

The average intensity is

I=\frac{P}{A}=\frac{1\cdot 10^5 W}{4.42\cdot 10^5 m^2}=0.23 W/m^2

4 0
3 years ago
Other questions:
  • If your boat weighs 1600 n, how much water will it displace when it’s floating motionless at the surface of a lake?
    10·1 answer
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • explain why a high speed collision between two cars would cause more damage than a low speed collision between the same two cars
    8·1 answer
  • What is the maximum number of double bonds that a hydrogen atom can form?
    7·1 answer
  • A projectile is fired with an initial speed of 100 m/s and angle of elevation 30 degrees. The projectile eventually hits the gro
    9·1 answer
  • Soap bubble interference Light of 690-nm wavelength interferes constructively when reflected from a soap bubble having refractiv
    14·1 answer
  • Assume that the speed of light in a vacuum has the hypothetical value of 18.0 m/s. A car is moving at a constant speed of 14.0 m
    13·1 answer
  • At exactly the same time, Daisy and Damond both step off a diving platform 5 meters high. Damond jumps up and out from the platf
    11·1 answer
  • 12
    14·1 answer
  • How far out from the sun is the rock line?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!