Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
Answer:
See explanation below
Explanation:
The equation to use for this is the following:
dU = q + w
As the heat is being release, this value is negative, and same here happens with the work done, because it's in the surroundings.
Therefore the change in the energy would be:
dU = -2.59x10^4 - 6.46^4
dU = -9.05x10^4 kJ
Well, the rings surrounding a planet are made out of rock. A ring surrounding the sun would be impossible since the sun can reach more than 27 million degrees Fahrenheit (15 million degrees Celsius.)
Hope this helped.
You have to add 1.7 and 2.2 together!
1.7+2.2=3.9μF