Answer:
Chemical change
Explanation:
A chemical change is what happens. The food digested changes smell due to some enzyme the has acted on the food which catalyzes the rate of digestion. The enzymes acts on the food in order to speed up the rate of the reaction (digestion) and in turn causing the smell.
Answer:
The intensity at 10° from the center is 3.06 × 10⁻⁴I₀
Explanation:
The intensity of light I = I₀(sinα/α)² where α = πasinθ/λ
I₀ = maximum intensity of light
a = slit width = 2.0 μm = 2.0 × 10⁻⁶ m
θ = angle at intensity point = 10°
λ = wavelength of light = 650 nm = 650 × 10⁻⁹ m
α = πasinθ/λ
= π(2.0 × 10⁻⁶ m)sin10°/650 × 10⁻⁹ m
= 1.0911/650 × 10³
= 0.001679 × 10³
= 1.679
Now, the intensity I is
I = I₀(sinα/α)²
= I₀(sin1.679/1.679)²
= I₀(0.0293/1.679)²
= 0.0175²I₀
= 0.0003063I₀
= 3.06 × 10⁻⁴I₀
So, the intensity at 10° from the center is 3.06 × 10⁻⁴I₀
Answer:
Explanation:
m = ρV = 1.03( 1000 kg/m³)(π(2² m²)(3.0 m)) = 12360π kg
m ≈ 38,830 kg
Six centimeters equal to about two inches
Answer:
The speed change during the 45-minute trip is 20[mph]
Explanation:
When we see the speed at the 45 minutes this is 20 [mph] and at the 0 minutes the speed is 0 [mph].
Therefore the change is (20 - 0) = 20 [mph]
In the attached image we can see the different figures. In fig 1 we can see the bicycle's speed after 10 minutes when the speed becames constant.
In the fig. 2 we can find the graph when the biker stopped at 30 minutes and took a 15-minute break.
Figures 3 and 4, show the differences when a horizontal line is traced on a position vs time graph, and when the horizontal line is traced in a speed vs time graph.
For fig 3 we can conclude that the body is not moving therefore there is no velocity or acceleration. And for the fig 4, we can realize that the area under the horizontal line represents a displacement during the respective interval of time.