Answer:
P = 10 kPa
Explanation:
Given that,
The mass of a small table, m = 4 kg
The area of each leg = 0.001 m²
We need to find the pressure exerted by the table on the floor. Pressure is equal to the force per unit area. So

So, the required pressure is 10 kPa.
The bicyclist accelerates with magnitude <em>a</em> such that
25.0 m = 1/2 <em>a</em> (4.90 s)²
Solve for <em>a</em> :
<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²
Then her final speed is <em>v</em> such that
<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)
Solve for <em>v</em> :
<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s
Convert to mph. If you know that 1 m ≈ 3.28 ft, then
(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h
<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
As we know by the first law of thermodynamics

here we know that
Q = heat given to the system

W = work done by the system
now here we can say


now we can say that heat will be given as

now here we can say that Jin does the error in his first step while calculation of change in internal energy as he had to subtract it while he added the two energy
So best describe Jin's Error is
<em>B )For step 1, he should have subtracted 78 J from 180 J to find the change in internal energy. </em>
Answer:
76.78 km/h To calculate the average velocity for the total trip, you need to first determine the total distance traveled and the total time taken. First, let's calculate the total distance traveled. The trip consists of 2 legs. The 1st leg is 280 km and the 2nd leg is 210 km. So the total distance is 280 km + 210 km = 490 km. Now you need to calculate the total time taken. For this problem, there are 3 intervals that need to be accounted for. The travel time for the 1st leg, the duration of the rest stop in the middle, and the travel time for the 2nd leg. The travel time for both legs is calculated by dividing the distance traveled by the average speed. So for the first leg we have 280 km / (88 km / h) = 3.181818 h The 2nd leg is 210 km / (75 km/h) = 2.8 h The rest stop in hours is 24 min / (60 min/h) = 0.4 h The total time is 3.181818 h + 2.8 h + 0.4 h = 6.381818 h The average velocity is the distance divided by the time, giving: 490 km / (6.381818 h) = 76.78 km/h
Explanation:
Hope this helps!!