The force that acts on all objects, all the time on Earth is gravitational force.
The force that surface exert on an object perpendicularly is normal reaction.
<h3>What force acts on all objects, all the time on Earth?</h3>
- Force due to gravity is gravitational pull on objects due to its position on earth's surface.
The force due to gravity on object's is calculated by applying Newton's second law of motion as follows;
F = mg
where;
- m is the mass of the object
- g is acceleration due to gravity
The force that surface exert on an object perpendicularly is normal reaction.
Thus, the force that acts on all objects, all the time on Earth is gravitational force.
Learn more about force of gravity here: brainly.com/question/2537310
Answer:
"Scientists used them to create new theories"
Explanation:
The Scientific Revolution was a sequence of actions that manifest the development of contemporary science through the early contemporary period, when advances in mathematics, physics, astronomy, biology and chemistry altered the opinions of civilization around nature. The scientific revolution denotes to the quick developments in European scientific, mathematical, and political assumed, grounded on a new philosophy of experimentation and a belief in growth that defined Europe in the 16th and 17th centuries.
Answer:
Mass of the disk will be 2.976 kg
Explanation:
We have given force F = 45 N
Radius of the disk r = 0.12 m
Angular acceleration 
We know that torque 
And 
So
, here I is moment of inertia
So 

We know that moment of inertia 
So 
m = 2.976 kg
The answer is C. Electrical;mechanical