Explanation:
In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, it is often represented as the product of force and displacement. A force is said to do positive work if (when applied) it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.
Quick Facts: Common symbols, SI unit ...
Work
A baseball pitcher does positive work on the ball by applying a force to it over the distance it moves while in his grip.
Common symbols
W
SI unit
joule (J)
Other units
Foot-pound, Erg
In SI base units
1 kg⋅m2⋅s−2
Derivations from
other quantities
W = F ⋅ s
W = τ θ
Dimension
M L2 T−2
Close
For example, when a ball is held above the ground and then dropped, the work done by the gravitational force on the ball as it falls is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement). When the force F is constant and the angle between the force and the displacement s is θ, then the work done is given by:
{\displaystyle W=Fs\cos {\theta }}{\displaystyle W=Fs\cos {\theta }}
Work is a scalar quantity, so it has only magnitude and no direction. Work transfers energy from one place to another, or one form to another. The SI unit of work is the joule (J), the same unit as for energy.
28.090.............................................
Answer:
A baseball (m= 149g) approaches a bat horizontally at a speed of 40.2 m/s (90 mi/h) and is hit straight back at a speed of 45.6m/s (102mi/h). If the ball is in contact with the bat for a time of 1.10ms, what is the average force exerted on the ball by the bat ? Neglect the weight of the ball, since it is so much less than the force of the bat. Choose the direction of the incoming ball as the positive direction.
Explanation:
Use the impulse equation (a form of Newton's 2nd Law): FΔt = Δ(mv) where Δ means "change in"
The change in momentum is mBB(vf - vi) = (.150 kg)(-46.9 m/s - 40.5 m/s)
Divide this by the time interval and you get F exerted by the bat in Newtons.
Take care.
Answer:
Seven
Explanation:
The rules for significant digits are:
- Non-zero digits are always significant.
- Zeros between significant digits are also significant.
- Trailing zeros are significant only after a decimal point.
Here, the 2, 4, 9, and 2 are significant because they are non-zero digits.
The first two 0s are significant because they are between significant digits.
The last 0 is significant because it is a trailing zero after a decimal point.
Therefore, all seven digits are significant.
Out of the choices given, the statement about how light travels is "<span>Light can travel in a vacuum, and it travels faster if the light source is moving."</span>