Answer:
The light bulb would glow brighter.
Explanation:
Resistance is the opposition to current flow and in Ohm's law is represented as a constant in the equation V = IR with V the voltage, I the current and R the resistance.
Now let's assume we are in a series circuit that has only one path for electricity to follow to better explain what would happen to a light bulb if the voltage increased but the resistance stayed the same. Based on ohm's law equation, the voltage is directly proportional to the current and the resistance is constant. An increase in the voltage is therefore an increase in the current which flows throught the light bulb making it glow brighter while a decrease in voltage results in a decrease in current flowing through the light bulb making it dim.
In series.
Single-pole and single-throw switch:
A switch with only one input and one output is referred to as a Single Pole Single Throw (SPST) switch. This indicates that it has a single output terminal and a single input terminal.
A single pole, one throw switch functions as an on/off switch in circuits. The circuit is turned on when the switch is closed. The circuit is shut off when the switch is open.
Thus, SPST switches are relatively basic in design.
Circuit for a single-pole, single-throw (SPST) switch
Types:
According to the application, it can be divided into three categories, including:
- (ON)-OFF, Push-to-close, SPST Momentary
- ON-(OFF), Push-to-Open, SPST Momentary
Learn more about terminal here:
brainly.com/question/14236970
#SPJ4
Answer:
you need to multiply the momentum and the mass
Static frictional force = ƒs = (Cs) • (Fɴ)
2.26 = (Cs) • m • g
2.26 = (Cs) • (1.85) • (9.8)
Cs = 0.125
kinetic frictional force = ƒκ = (Cκ) • (Fɴ)
1.49 = (Cκ) • m • g
1.49 = (Cκ) • (1.85) • (9.8)
Cκ = 0.0822
It takes significantly stronger magnetic and electric field strengths to move a beam of alpha particles compared with the beam of electrons(betaparticles) because the charge of an alpha particle is twice stronger than a beta particle. Therefore, more energy is needed to move the alpha particle.