The plant grows in the solid part of earth, the lithosphere. When water evaporates from the plant, it enters the hydrosphere, the portion if earth on kand and in the air that contains water. The atmosphere is part of the hydrosphere.
Answer:
Normal stress = 66/62.84 = 1.05kips/in²
shearing stress = T/2 = 0.952/2 = 0.476 kips/in²
Explanation:
A steel pipe of 12-in. outer diameter d₂ =12in d₁= 12 -4in = 8in
4 -in.-thick
angle of 25°
Axial force P = 66 kip axial force
determine the normal and shearing stresses
Normal stress б = force/area = P/A
= 66/ (П* (d₂²-d₁²)/4
=66/ (3.142* (12²-8²)/4
= 66/62.84 = 1.05kips/in²
Tangential stress T = force* cos ∅/area = P/A
= 66* cos 25/ (П* (d₂²-d₁²)/4
=59.82/ (3.142* (12²-8²)/4
= 59.82/62.84 = 0.952kips/in²
shearing stress = tangential stress /2
= T/2 = 0.952/2 = 0.476 kips/in²
Answer:
BTS was the biggest fandom in 2020
Formula to find gravitational potential energy:
mgh
m: mass
g: gravitational acceleration
h: height (relative to reference level)
so the P.E. at 1.0.m is (5x9.8x1)= 49J
P.E. at 1.5m is (5x9.8x1.5) =73.5J
P.E. at 2.0m is (5x9.8x2)=98J
Vo = 5.89 m/s Y = 1.27 m g = 9.81 m/s^2
Time to height
Tr = Vo / g Tr = (5.89 m/s) / (9.81 m/s^2) Tr = 0.60 s
Max height achieved is:
H = Vo^2 / [2g] H = (5.89 )^2 / [ 2 * (9.81) ] H = (34.69) / [19.62] H = 1.77 m
It falls that distance, minus Andrew's catch distance:
h = H - Y h = (1.77 m) - (1.27 m) h = 0.5 m
Time to descend is therefore:
Tf = √ { [2h] / g ] Tf = √ { [ 2 * (0.5 m) ] / (9.81 m/s^2) } Tf = √ { [ 1.0 m ] / (9.81 m/s^2) } Tf = √ { 0.102 s^2 } Tf = 0.32 s
Total time is rise plus fall therefore:
Tt = Tr + Tf Tt = (0.60 s) + (0.32 s) Tt = 0.92 s (ANSWER)