1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
14

Six moles of an ideal gas are in a cylinder fitted at one end with a movable piston. The initial temperature of the gas is 28.0

∘C and the pressure is constant.Part AAs part of a machine design project, calculate the final temperature of the gas after it has done 1770 J .Express your answer using three significant figures.
Physics
1 answer:
mel-nik [20]3 years ago
7 0

Answer:

63.5 °C

Explanation:

The expression for the calculation of work done is shown below as:

w=P\times \Delta V

Where, P is the pressure

\Delta V is the change in volume

Also,

Considering the ideal gas equation as:-

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 8.314 J/ K mol

So,

V=\frac{nRT}{P}

Also, for change in volume at constant pressure, the above equation can be written as;-

\Delta V=\frac{nR\times \Delta T}{P}

So, putting in the expression of the work done, we get that:-

w=P\times \frac{nR\times \Delta T}{P}=nR\times \Delta T

Given, initial temperature = 28.0 °C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T₁ = (28.0 + 273.15) K = 301.15 K

W=1770 J

n = 6 moles

So,

1770\ J=6 moles\times 8.314\ J/ Kmol \times (T_2-301.15\ K)

Thus,

T_2=301.15\ K+\frac{1770}{6\times 8.314}\ K

T_2=336.63\ K

The temperature in Celsius = 336.63-273.15 °C = 63.5 °C

<u>The final temperature is:- 63.5 °C</u>

You might be interested in
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
Which method of measurement would be accurate but lack precision?
kodGreya [7K]

Answer:

B

Explanation:

reading the volume of water in a graduated cylinder which can be read to the nearest mL is accurate, it lacks precision due to the bottom meniscus formed.

the bottom meniscus may cause a wrong reading due to refraction of light

7 0
2 years ago
It takes 15 min to drive 6.0 mi in a straight line to the local hospital. It takes 10 min to go the last 3.0 mi, 2.0 min to go t
Gala2k [10]

Answer:

36.87 km/h

Explanation:

Convert all the units in SI system

1 mile = 1609.34 m

d1 = 6 mi = 9656.04 m

t1 = 15 min = 15 x 60 = 900 s

d2 = 3 mi = 4828.02 m

t2 = 10 min = 10 x 60 = 600 s

d3 = 1 mi = 1609.34 m

t3 = 2 min = 2 x 60 = 120 s

d4 = 0.5 mi = 804.67 m

t4 = 0.5 min = 0.5 x 60 = 30 s

Total distance, d = d1 + d2 + d3 + d4

d = 9656.04 + 4828.02 +  1609.34 + 804.67 = 16898.07 m = 16.898 km

total time, t = t1 + t2 + t3 + t4

t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h

The ratio of the total distance covered to the total time taken is called average speed.

Average speed = 16.898 / 0.4583 = 36.87 km/h

6 0
3 years ago
Suppose that a star has a spectrum that includes red, blue, and violet lines spaced in the pattern of the lines from hydrogen bu
ladessa [460]

Answer:

It can be concluded that the star is moving away from the observer.

Explanation:

Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving  toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).

The wavelength at rest for this case is 434 nm and 410 nm (\lambda_{0} = 434nm, \lambda_{0} = 410nm)

Redshift: \lambda_{measured}  >  \lambda_{0}

Blueshift: \lambda_{measured}  <  \lambda_{0}

Since, \lambda_{measured} (444nm) is greater than \lambda_{0} (434 nm) and \lambda_{measured} (420nm) is greater than \lambda_{0} (410 nm), it can be concluded that the star is moving away from the observer

6 0
3 years ago
The helicopter was deformed and destroyed in the __?___ collision.
MariettaO [177]

Answer:

The helicopter was deformed and destroyed in the inelastic collision.

Explanation:

  • When two object collide there exist two way of colliding: elastic collision and inelastic collision.
  • Two terms are considered during the collision: kinetic energy and momentum.
  • If both of these terms are conserved in any collision then there is no significant loss of property, this is called as elastic collision.
  • If only momentum is conserved but kinetic energy is converted into other forms then it is inelastic collision. In inelastic collision, the energy is lost in the form of vibration, sound etc. causing the damage to colliding object.
  • Hence the deformation of helicopter was due to inelastic collision.
5 0
3 years ago
Other questions:
  • The speed of a box traveling on a horizontal friction surface changes from vi = 13 m/s to vf = 11.5 m/s in a distance of d = 8.5
    11·1 answer
  • You have 10 ohm and a 100 ohm resistor in parallel. You place this equivalent resistance in series with an LED, which is rated t
    7·1 answer
  • You are designing a ski jump ramp for the next Winter Olympics. Youneed to calculate the vertical height^ h from the starting ga
    10·1 answer
  • A temperature if 273 k is the temperature at which water
    10·2 answers
  • What effect will a turning point have on an individuals life
    15·2 answers
  • A 60-kg skier is stationary at the top of a hill. She then pushes off and heads down the hill with an initial speed of 4.0 m/s.
    14·2 answers
  • Please helpers! I wrote the first questions answer but from there i didnt know how to calculate.
    13·1 answer
  • GIVING BRAINLIEST PLEASE HELP!!
    11·1 answer
  • If you cannot exert enough force to loosen a bolt with a wrench, which of the following should you do?
    8·1 answer
  • What physical properties dose plutonium
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!