Answer:
vf = 11.2 m/s
Explanation:
m = 10 Kg
F = 2*10² N
x = 4.00 m
μ = 0.44
vi = 0 m/s
vf = ?
We can apply Newton's 2nd Law
∑ Fx = m*a (→)
F - Ffriction = m*a ⇒ F - (μ*N) = F - (μ*m*g) = m*a ⇒ a = (F - μ*m*g)/m
⇒ a = (2*10² N - 0.44*10 Kg*9.81 m/s²)/10 Kg = 15.6836 m/s²
then , we use the equation
vf² = vi² + 2*a*x ⇒ vf = √(vi² + 2*a*x)
⇒ vf = √((0)² + 2*(15.6836 m/s²)*(4.00m)) = 11.2 m/s
hey guy
the vibration per second is frequency
then for 20 vibration time taken is 100 second
in 1 second 20/100 vibration took place
it means 0.2 is frequency
for time period , we have
t=1/f
=1/0.2
=5
Precision balances have a readability of 0.01 g. They produce steady readings in a wider range of environmental conditions than analytical balances, being less sensitive to temperature fluctuations.
<span>A molded bread is a good example of a chemical change. A chemical change is a kind of change in which a new substance is formed. In a chemical change, the original substance which started the reaction can not be recovered.The molded bread formed in this given instance is a new substance which is different from the original bread, so also, the original bread can no longer be retrieved from the molded bread.</span>