<span>
It makes sense that an inner shell electron would be tougher to remove
than a valence electron because the inner shell electron is closer to
the positive nucleus of the atom. Seeing as an electron caries a
negative charge it would be too attracted to the positive core to leave
readily. Also, the inner shell electrons are constantly repelling
electrons outside of it's energy level (however the reason these
electrons outside innershell energy levels don't simply fly away is the
charge of the positive core overcomes the smaller charges of the
comparably negligible inner shell electrons, but that repulsion is still
there so keep that in mind) </span>
Answer:
calcium is a metal and metals are good conductors of electricity as they contain mobile electrons.
Explanation:
I think it would be these three answers ionic , covalent , and polar covalent
Orbital shell notation of fluorine is 2. 7 while that of oxygen s 2. 6. This means that these elements (that follow each other in the periodic table) will have high electronegativity in molecules due to their high atomic number (which causes them to strongly attract electron orbital shell closer to their nucleus). NB: Atomic number of a peroid increased from left to right of the periodic table.
Therefore, in the first molecule, the negative dipole would most likely be located between the F atoms In the second molecule the negative molecule would be most likely located in the between the O and F atoms.
The required net ionic equation is; 2H^+(aq) + 2OH^-(aq)-----> 2H2O(l)
The molecular reaction equation is;
H2SeO3(aq) + 2KOH(aq) -----> K2SeO3(aq) + 2H2O(l)
The complete ionic equation is;
2H^+(aq) + SeO3^2-(aq) + 2K^+(aq) + 2OH^-(aq)-----> 2K^+(aq) + SeO3^2-(aq) + 2H2O(l)
Net ionic equation;
2H^+(aq) + 2OH^-(aq)-----> 2H2O(l)
We can clearly see that this is a neutralization reaction hence water is the product of the net ionic equation.
Learn more:brainly.com/question/25150590